1.Impact of lithocholic acid on the osteogenic and adipogenic differentiation balance of bone marrow mesenchymal stem cells.
Cui WANG ; Jiao LI ; Lingyun LU ; Lu LIU ; Xijie YU
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):82-90
OBJECTIVE:
To Investigate the effects of lithocholic acid (LCA) on the balance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).
METHODS:
Twelve 10-week-old SPF C57BL/6J female mice were randomly divided into an experimental group (undergoing bilateral ovariectomy) and a control group (only removing the same volume of adipose tissue around the ovaries), with 6 mice in each group. The body mass was measured every week after operation. After 4 weeks post-surgery, the weight of mouse uterus was measured, femur specimens of the mice were taken for micro-CT scanning and three-dimensional reconstruction to analyze changes in bone mass. Tibia specimens were taken for HE staining to calculate the number and area of bone marrow adipocytes in the marrow cavity area. ELISA was used to detect the expression of bone turnover markers in the serum. Liver samples were subjected to real-time fluorescence quantitative PCR (RT-qPCR) to detect the expression of key genes related to bile acid metabolism, including cyp7a1, cyp7b1, cyp8b1, and cyp27a1. BMSCs were isolated by centrifugation from 2 C57BL/6J female mice (10-week-old). The third-generation cells were exposed to 0, 1, 10, and 100 μmol/L LCA, following which cell viability was evaluated using the cell counting kit 8 assay. Subsequently, alkaline phosphatase (ALP) staining and oil red O staining were conducted after 7 days of osteogenic and adipogenic induction. RT-qPCR was employed to analyze the expressions of osteogenic-related genes, namely ALP, Runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), as well as adipogenic-related genes including Adiponectin (Adipoq), fatty acid binding protein 4 (FABP4), and peroxisome proliferator-activated receptor γ (PPARγ).
RESULTS:
Compared with the control group, the body mass of the mice in the experimental group increased, the uterus atrophied, the bone mass decreased, the bone marrow fat expanded, and the bone metabolism showed a high bone turnover state. RT-qPCR showed that the expressions of cyp7a1, cyp8b1, and cyp27a1, which were related to the key enzymes of bile acid metabolism in the liver, decreased significantly ( P<0.05), while the expression of cyp7b1 had no significant difference ( P>0.05). Intervention with LCA at concentrations of 1, 10, and 100 μmol/L did not demonstrate any apparent toxic effects on BMSCs. Furthermore, LCA inhibited the expressions of osteogenic-related genes (ALP, Runx2, and OCN) in a dose-dependent manner, resulting in a reduction in ALP staining positive area. Concurrently, LCA promoted the expressions of adipogenic-related genes (Adipoq, FABP4, and PPARγ), and an increase in oil red O staining positive area.
CONCLUSION
After menopause, the metabolism of bile acids is altered, and secondary bile acid LCA interferes with the balance of osteogenic and adipogenic differentiation of BMSCs, thereby affecting bone remodelling.
Female
;
Mice
;
Animals
;
Core Binding Factor Alpha 1 Subunit/pharmacology*
;
PPAR gamma/metabolism*
;
Steroid 12-alpha-Hydroxylase/metabolism*
;
Mice, Inbred C57BL
;
Cell Differentiation
;
Osteogenesis
;
Mesenchymal Stem Cells
;
Bile Acids and Salts/pharmacology*
;
Bone Marrow Cells
;
Cells, Cultured
;
Azo Compounds
2.Study on injectable chitosan hydrogel with tendon-derived stem cells for enhancing rotator cuff tendon-to-bone healing.
Huawei WEN ; Qingsong ZHANG ; Ming TANG ; Ya'nan LI ; Hongfei TAN ; Yushun FANG
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):91-98
OBJECTIVE:
To explore the effect of chitosan (CS) hydrogel loaded with tendon-derived stem cells (TDSCs; hereinafter referred to as TDSCs/CS hydrogel) on tendon-to-bone healing after rotator cuff repair in rabbits.
METHODS:
TDSCs were isolated from the rotator cuff tissue of 3 adult New Zealand white rabbits by Henderson step-by-step enzymatic digestion method and identified by multidirectional differentiation and flow cytometry. The 3rd generation TDSCs were encapsulated in CS to construct TDSCs/CS hydrogel. The cell counting kit 8 (CCK-8) assay was used to detect the proliferation of TDSCs in the hydrogel after 1-5 days of culture in vitro, and cell compatibility of TDSCs/CS hydrogel was evaluated by using TDSCs alone as control. Another 36 adult New Zealand white rabbits were randomly divided into 3 groups ( n=12): rotator cuff repair group (control group), rotator cuff repair+CS hydrogel injection group (CS group), and rotator cuff repair+TDSCs/CS hydrogel injection group (TDSCs/CS group). After establishing the rotator cuff repair models, the corresponding hydrogel was injected into the tendon-to-bone interface in the CS group and TDSCs/CS group, and no other treatment was performed in the control group. The general condition of the animals was observed after operation. At 4 and 8 weeks, real-time quantitative PCR (qPCR) was used to detect the relative expressions of tendon forming related genes (tenomodulin, scleraxis), chondrogenesis related genes (aggrecan, sex determining region Y-related high mobility group-box gene 9), and osteogenesis related genes (alkaline phosphatase, Runt-related transcription factor 2) at the tendon-to-bone interface. At 8 weeks, HE and Masson staining were used to observe the histological changes, and the biomechanical test was used to evaluate the ultimate load and the failure site of the repaired rotator cuff to evaluate the tendon-to-bone healing and biomechanical properties.
RESULTS:
CCK-8 assay showed that the CS hydrogel could promote the proliferation of TDSCs ( P<0.05). qPCR results showed that the expressions of tendon-to-bone interface related genes were significantly higher in the TDSCs/CS group than in the CS group and control group at 4 and 8 weeks after operation ( P<0.05). Moreover, the expressions of tendon-to-bone interface related genes at 8 weeks after operation were significantly higher than those at 4 weeks after operation in the TDSCs/CS group ( P<0.05). Histological staining showed the clear cartilage tissue and dense and orderly collagen formation at the tendon-to-bone interface in the TDSCs/CS group. The results of semi-quantitative analysis showed that compared with the control group, the number of cells, the proportion of collagen fiber orientation, and the histological score in the TDSCs/CS group increased, the vascularity decreased, showing significant differences ( P<0.05); compared with the CS group, the proportion of collagen fiber orientation and the histological score in the TDSCs/CS group significantly increased ( P<0.05), while there was no significant difference in the number of cells and vascularity ( P>0.05). All samples in biomechanical testing failed at the repair site during the testing process. The ultimate load of the TDSCs/CS group was significantly higher than that of the control group ( P<0.05), but there was no significant difference compared to the CS group ( P>0.05).
CONCLUSION
TDSCs/CS hydrogel can induce cartilage regeneration to promote rotator cuff tendon-to-bone healing.
Rabbits
;
Animals
;
Rotator Cuff/surgery*
;
Chitosan
;
Hydrogels
;
Rotator Cuff Injuries/surgery*
;
Wound Healing
;
Tendons/surgery*
;
Collagen
;
Stem Cells
;
Biomechanical Phenomena
3.Research advances on stem cell-based treatments in animal studies and clinical trials of lymphedema.
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):99-106
OBJECTIVE:
To summarize the progress of the roles and mechanisms of various types of stem cell-based treatments and their combination therapies in both animal studies and clinical trials of lymphedema.
METHODS:
The literature on stem cell-based treatments for lymphedema in recent years at home and abroad was extensively reviewed, and the animal studies and clinical trials on different types of stem cells for lymphedema were summarized.
RESULTS:
Various types of stem cells have shown certain effects in animal studies and clinical trials on the treatment of lymphedema, mainly through local differentiation into lymphoid endothelial cells and paracrine cytokines with different functions. Current research focuses on two cell types, adipose derived stem cells and bone marrow mesenchymal stem cells, both of which have their own advantages and disadvantages, mainly reflected in the therapeutic effect of stem cells, the difficulty of obtaining stem cells and the content in vivo. In addition, stem cells can also play a synergistic role in combination with other treatments, such as conservative treatment, surgical intervention, cytokines, biological scaffolds, and so on. However, it is still limited to the basic research stage, and only a small number of studies have completed clinical trials.
CONCLUSION
Stem cells have great transformation potential in the treatment of lymphedema, but there is no unified standard in the selection of cell types, the amount of transplanted cells, and the timing of transplantation.
Animals
;
Endothelial Cells
;
Lymphedema/therapy*
;
Stem Cell Transplantation
;
Cytokines
4.Stem Cell-Based Hair Cell Regeneration and Therapy in the Inner Ear.
Jieyu QI ; Wenjuan HUANG ; Yicheng LU ; Xuehan YANG ; Yinyi ZHOU ; Tian CHEN ; Xiaohan WANG ; Yafeng YU ; Jia-Qiang SUN ; Renjie CHAI
Neuroscience Bulletin 2024;40(1):113-126
Hearing loss has become increasingly prevalent and causes considerable disability, thus gravely burdening the global economy. Irreversible loss of hair cells is a main cause of sensorineural hearing loss, and currently, the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids, but these are of limited benefit in patients. It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies. At present, how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research. Multiple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells, and in this article, we first review the principal mechanisms underlying hair cell reproduction. We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration, and we summarize current achievements in hair cell regeneration. Lastly, we discuss potential future approaches, such as small molecule drugs and gene therapy, which might be applied for regenerating functional hair cells in the clinic.
Infant, Newborn
;
Humans
;
Hair Cells, Auditory, Inner/physiology*
;
Ear, Inner/physiology*
;
Hair Cells, Auditory/physiology*
;
Regeneration/genetics*
;
Stem Cells
5.Neural Stem Cell Competition.
Neuroscience Bulletin 2024;40(2):277-279
6.Deubiquitinating enzyme MINDY1 is an independent risk factor for the maintenance of stemness and poor prognosis in liver cancer cells.
Bo Lin XIA ; Ke Wei LIU ; Hong Xia HUANG ; Mei Mei SHEN ; Bin WANG ; Jian GAO
Chinese Journal of Hepatology 2023;31(5):518-523
Objective: To explore the key deubiquitinating enzymes that maintain the stemness of liver cancer stem cells and provide new ideas for targeted liver cancer therapy. Methods: The high-throughput CRISPR screening technology was used to screen the deubiquitinating enzymes that maintain the stemness of liver cancer stem cells. RT-qPCR and Western blot were used to analyze gene expression levels. Stemness of liver cancer cells was detected by spheroid-formation and soft agar colony formation assays. Tumor growth in nude mice was detected by subcutaneous tumor-bearing experiments. Bioinformatics and clinical samples were examined for the clinical significance of target genes. Results: MINDY1 was highly expressed in liver cancer stem cells. The expression of stem markers, the self-renewal ability of cells, and the growth of transplanted tumors were significantly reduced and inhibited after knocking out MINDY1, and its mechanism of action may be related to the regulation of the Wnt signaling pathway. The expression level of MINDY1 was higher in liver cancer tissues than that in adjacent tumors, which was closely related to tumor progression, and its high expression was an independent risk factor for a poor prognosis of liver cancer. Conclusion: The deubiquitinating enzyme MINDY1 promotes stemness in liver cancer cells and is one of the independent predictors of poor prognosis in liver cancer.
Animals
;
Mice
;
Cell Line, Tumor
;
Mice, Nude
;
Liver Neoplasms/pathology*
;
Prognosis
;
Deubiquitinating Enzymes/metabolism*
;
Neoplastic Stem Cells/pathology*
;
Gene Expression Regulation, Neoplastic
7.Research progress of mesenchymal stem cell-derived extracellular vesicles in liver diseases.
Chinese Journal of Hepatology 2023;31(5):556-560
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) transport and transmit intercellular information and play an essential role in physiological and pathological processes. MSC-EVs, MSC-EVs-microRNA, and genetically modified MSC-EVs are involved in the onset and progression of different liver diseases and play a role in reducing liver cell damage, promoting liver cell regeneration, inhibiting liver fibrosis, regulating liver immunity, alleviating liver oxidative stress, inhibiting liver cancer occurrence, and others. Hence, it will replace MSCs as a research hotspot for cell-free therapy. This article reviews the research progress of MSC-EVs in liver diseases and provides a new basis for cell-free therapy of clinical liver diseases.
Humans
;
Extracellular Vesicles
;
MicroRNAs/genetics*
;
Liver Neoplasms
;
Mesenchymal Stem Cells
8.Research progress in lineage tracing to explore hepatic parenchymal cell regeneration and repair mechanisms.
Chinese Journal of Hepatology 2023;31(7):781-784
Hepatic parenchymal cells are a type of liver cells that performs important functions such as metabolism and detoxification. The contribution of hepatic parenchymal cells, bile duct cells, and hepatic stem/progenitor cells to new hepatic parenchymal cells in the process of liver injury repair has become a controversial issue due to their strong proliferation ability. Lineage tracing technology, which has emerged in the past decade as a new method for exploring the origin of cells, can trace specific type of cells and their daughter cells by labeling cells that express the specific gene and their progeny. The article reviews the current literature on the origin and contribution of hepatic parenchymal cells by this technique. About 98% of new hepatic parenchymal cells originate from the existing hepatic parenchymal cells during liver homeostasis and after acute injury. However, under conditions of severe liver injury, such as inhibition of hepatic parenchymal cell proliferation, bile duct cells (mainly liver stem/progenitor cells) become the predominant source of hepatic parenchymal cells, contributing a steady increased hepatocyte regeneration with the extension of time.
Hepatocytes/metabolism*
;
Liver/metabolism*
;
Bile Ducts
;
Stem Cells
;
Liver Regeneration/physiology*
;
Cell Differentiation
9.Baicalin attenuates dexamethasone-induced apoptosis of bone marrow mesenchymal stem cells by activating the hedgehog signaling pathway.
Bin JIA ; Yaping JIANG ; Yao YAO ; Yingxing XU ; Yingzhen WANG ; Tao LI
Chinese Medical Journal 2023;136(15):1839-1847
BACKGROUND:
Perturbations in bone marrow mesenchymal stem cell (BMSC) differentiation play an important role in steroid-induced osteonecrosis of the femoral head (SONFH). At present, studies on SONFH concentrate upon the balance within BMSC osteogenic and adipogenic differentiation. However, BMSC apoptosis as well as proliferation are important prerequisites in their differentiation. The hedgehog (HH) signaling pathway regulates bone cell apoptosis. Baicalin (BA), a well-known compound in traditional Chinese medicine, can affect the proliferation and apoptosis of numerous cell types via HH signaling. However, the potential role and mechanisms of BA on BMSCs are unclear. Thus, we aimed to explore the role of BA in dexamethasone (Dex)-induced BMSC apoptosis in this study.
METHODS:
Primary BMSCs were treated with 10 -6 mol/L Dex alone or with 5.0 μmol/L, 10.0 μmol/L, or 50.0 μmol/L BA for 24 hours followed by co-treatment with 5.0 μmol/L, 10.0 μmol/L, or 50.0 μmol/L BA and 10 -6 mol/L Dex. Cell viability was assayed through the Cell Counting Kit-8 (CCK-8). Cell apoptosis was evaluated using Annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining followed by flow cytometry. The imaging and counting, respectively, of Hochest 33342/PI-stained cells were used to assess the morphological characteristics and proportion of apoptotic cells. To quantify the apoptosis-related proteins (e.g., apoptosis regulator BAX [Bax], B-cell lymphoma 2 [Bcl-2], caspase-3, and cleaved caspase-3) and HH signaling pathway proteins, western blotting was used. A HH-signaling pathway inhibitor was used to demonstrate that BA exerts its anti-apoptotic effects via the HH signaling pathway.
RESULTS:
The results of CCK-8, Hoechst 33342/PI-staining, and flow cytometry showed that BA did not significantly promote cell proliferation (CCK-8: 0 μmol/L, 100%; 2.5 μmol/L, 98.58%; 5.0 μmol/L, 95.18%; 10.0 μmol/L, 98.11%; 50.0 μmol/L, 99.38%, F = 2.33, P > 0.05), but it did attenuate the effect of Dex on apoptosis (Hoechst 33342/PI-staining: Dex+ 50.0 μmol/L BA, 12.27% vs. Dex, 39.27%, t = 20.62; flow cytometry: Dex + 50.0 μmol/L BA, 12.68% vs. Dex, 37.43%, t = 11.56; Both P < 0.05). The results of western blotting analysis showed that BA reversed Dex-induced apoptosis by activating the HH signaling pathway, which down-regulated the expression of Bax, cleaved-caspase 3, and suppressor of fused (SUFU) while up-regulating Bcl-2, sonic hedgehog (SHH), and zinc finger protein GLI-1 (GLI-1) expression (Bax/Bcl-2: Dex+ 50.0 μmol/L BA, 1.09 vs. Dex, 2.76, t = 35.12; cleaved caspase-3/caspase-3: Dex + 50.0 μmol/L BA, 0.38 vs . Dex, 0.73, t = 10.62; SHH: Dex + 50.0 μmol/L BA, 0.50 vs . Dex, 0.12, t = 34.01; SUFU: Dex+ 50.0 μmol/L BA, 0.75 vs . Dex, 1.19, t = 10.78; GLI-1: Dex+ 50.0 μmol/L BA, 0.40 vs . Dex, 0.11, t = 30.68. All P < 0.05).
CONCLUSIONS
BA antagonizes Dex-induced apoptosis of human BMSCs by activating the HH signaling pathway. It is a potential candidate for preventing SONFH.
Humans
;
Hedgehog Proteins/metabolism*
;
bcl-2-Associated X Protein
;
Caspase 3/metabolism*
;
Signal Transduction/physiology*
;
Apoptosis
;
Apoptosis Regulatory Proteins/pharmacology*
;
Dexamethasone/pharmacology*
;
Mesenchymal Stem Cells/metabolism*
;
Bone Marrow Cells
10.Rapamycin mediated caspase 9 homodimerization to safeguard human pluripotent stem cell therapy.
Yang YANG ; Yang LIU ; Min CHEN ; Shuangpeng LI ; Xuan LU ; Yu HE ; Kun ZHANG ; Qingjian ZOU
Chinese Journal of Biotechnology 2023;39(10):4098-4107
Human induced pluripotent stem cells (hiPSCs) are promising in regenerative medicine. However, the pluripotent stem cells (PSCs) may form clumps of cancerous tissue, which is a major safety concern in PSCs therapies. Rapamycin is a safe and widely used immunosuppressive pharmaceutical that acts through heterodimerization of the FKBP12 and FRB fragment. Here, we aimed to insert a rapamycin inducible caspase 9 (riC9) gene in a safe harbor AAVS1 site to safeguard hiPSCs therapy by drug induced homodimerization. The donor vector containing an EF1α promoter, a FRB-FKBP-Caspase 9 (CARD domain) fusion protein and a puromycin resistant gene was constructed and co-transfected with sgRNA/Cas9 vector into hiPSCs. After one to two weeks screening with puromycin, single clones were collected for genotype and phenotype analysis. Finally, rapamycin was used to induce the homodimerization of caspase 9 to activate the apoptosis of the engineered cells. After transfection of hiPSCs followed by puromycin screening, five cell clones were collected. Genome amplification and sequencing showed that the donor DNA has been precisely knocked out at the endogenous AAVS1 site. The engineered hiPSCs showed normal pluripotency and proliferative capacity. Rapamycin induced caspase 9 activation, which led to the apoptosis of all engineered hiPSCs and its differentiated cells with different sensitivity to drugs. In conclusion, we generated a rapamycin-controllable hiPSCs survival by homodimerization of caspase 9 to turn on cell apoptosis. It provides a new strategy to guarantee the safety of the hiPSCs therapy.
Humans
;
Induced Pluripotent Stem Cells
;
Sirolimus/metabolism*
;
Caspase 9/metabolism*
;
RNA, Guide, CRISPR-Cas Systems
;
Pluripotent Stem Cells/metabolism*
;
Cell Differentiation
;
Puromycin/metabolism*

Result Analysis
Print
Save
E-mail