1.Leukemia stem cells and their microenvironment--editorial.
Ke-Fu WU ; Xiao-Tong MA ; Guo-Guang ZHENG ; Yu-Hua SONG
Journal of Experimental Hematology 2007;15(6):1139-1141
As pioneer of tumor stem cell research, leukemia stem cell research has not only important theoretical significance, but also clinical application potential. The survival and development of stem cells are directly impacted by their microenvironment. The research on leukemia stem cells and their microenvironment are now becoming a hot topic. The author presumes that stem cells are a population with heterogenecity and hierarchy; any single cell from the population is difficult to form a clone; the interaction between the leukemia stem cell and its microenvironment can be described by the concept of leukemia stem cell niche. In this article, the leukemia cell population with heterogenecity and hierarchy as well as leukemia stem cell niche were summarized and discussed.
Cell Line, Tumor
;
Humans
;
Leukemia
;
genetics
;
pathology
;
Neoplastic Stem Cells
;
metabolism
;
pathology
;
Stem Cell Niche
;
cytology
;
Stromal Cells
;
cytology
;
immunology
2.Intramarrow injection of beta-catenin-activated, but not naive mesenchymal stromal cells stimulates self-renewal of hematopoietic stem cells in bone marrow.
Ji Yeon AHN ; Gyeongsin PARK ; Jae Seung SHIM ; Jong Wook LEE ; Il Hoan OH
Experimental & Molecular Medicine 2010;42(2):122-131
Bone marrow mesenchymal stromal cells (MSCs) have been implicated in the microenvironmental support of hematopoietic stem cells (HSCs) and often co-transplanted with HSCs to facilitate recovery of ablated bone marrows. However, the precise effect of transplanted MSCs on HSC regeneration remains unclear because the kinetics of HSC self-renewal in vivo after co-transplantation has not been monitored. In this study, we examined the effects of intrafemoral injection of MSCs on HSC self-renewal in rigorous competitive repopulating unit (CRU) assays using congenic transplantation models in which stromal progenitors (CFU-F) were ablated by irradiation. Interestingly, naive MSCs injected into femur contributed to the reconstitution of a stromal niche in the ablated bone marrows, but did not exert a stimulatory effect on the in-vivo self-renewal of co-transplanted HSCs regardless of the transplantation methods. In contrast, HSC self-renewal was four-fold higher in bone marrows intrafemorally injected with beta-catenin-activated MSCs. These results reveal that naive MSCs lack a stimulatory effect on HSC self-renewal in-vivo and that stroma must be activated during recoveries of bone marrows. Stromal targeting of wnt/beta-catenin signals may be a strategy to activate such a stem cell niche for efficient regeneration of bone marrow HSCs.
Animals
;
Bone Marrow/metabolism/pathology
;
Hematopoietic Stem Cell Mobilization
;
*Hematopoietic Stem Cell Transplantation
;
Hematopoietic Stem Cells/pathology
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells/*metabolism/pathology
;
Mice
;
Mice, Inbred C57BL
;
Radiation Chimera
;
Regeneration
;
Stem Cell Niche/metabolism/pathology
;
Stromal Cells/*metabolism/pathology
;
*Transplantation Conditioning
;
beta Catenin/*metabolism