1.Immunogenicity of Staphylococcus aureus recombinant clumping factor A.
Hao FENG ; Lefeng LIU ; Jiaqi CHI ; Ning WANG ; Runting LI ; Chunyu TONG ; Jinzhu MA ; Zhanbo ZHU ; Yudong CUI
Chinese Journal of Biotechnology 2009;25(8):1180-1186
In order to characterize the immunogenicity and immunoprotection of the Staphylococcus aureus (S. aureus) surface protein Clumping factor A (ClfA), we amplified clfa genes from S. aureus Newman strain, Wood46 strain and HLJ23-1. The clfa gene from Newman strain was subsequently inserted into pQE-30 vector and the recombinant plasmid was transformed into Escherichia coli strain M15 (pREP4). The recombinant ClfA protein was expressed and purified. Then, we immunized mice with the purified recombinant protein. The antibody level and the concentration of cytokines were measured by enzyme-linked immunosorbent assay. Finally, immunized mice were challenged with S. aureus Newman, Wood46 and HLJ23-1. These results suggested that clfa gene sequences were highly conserved, and the recombinant ClfA was expressed correctly with good antigenicity. The antibody titer and the concentration of cytokines in the immunized groups increased significantly (P < 0.05) compared with control, and the mice in the immunized groups were protected against the challenge strains to some extent. These results showed that the ClfA had high immunogenicity and immunoprotective potential.
Animals
;
Coagulase
;
genetics
;
immunology
;
metabolism
;
Escherichia coli
;
genetics
;
metabolism
;
Immunization
;
Mice
;
Recombinant Proteins
;
genetics
;
immunology
;
metabolism
;
Staphylococcus aureus
;
metabolism
;
pathogenicity
2.Role of Staphylococcal Superantigen in Atopic Dermatitis: Influence on Keratinocytes.
Kyu Han KIM ; Ji Hyun HAN ; Jin Ho CHUNG ; Kwang Hyun CHO ; Hee Chul EUN
Journal of Korean Medical Science 2006;21(2):315-323
Staphylococcus aureus may perform an crucial function in atopic dermatitis (AD), via the secretion of superantigens, including staphylococcal enterotoxins (SE) A or B, and toxic shock syndrome toxin-1 (TSST-1). Dysregulated cytokine production by keratinocytes (KCs) upon exposure to staphylococcal superantigens (SsAgs) may be principally involved in the pathophysiology of AD. We hypothesized that lesional KCs from AD may react differently to SsAgs compared to nonlesional skin or normal skin from nonatopics. We conducted a comparison of HLA-DR or CD1a expression in lesional skin as opposed to that in nonlesional or normal skin by immunohistochemistry (IHC). We also compared, using ELISA, the levels of IL-1alpha, IL-1beta, and TNF-alpha secreted by cultured KCs from lesional, nonlesional, and normal skin, after the addition of SEA, SEB and TSST-1. IHC revealed that both HLA-DR and CD1a expression increased significantly in the epidermis of lesional skin versus nonlesional or normal skin in quite a similar manner. IL-1alpha, IL-1beta, and TNF-alpha secretion was also significantly elevated in the cultured KCs from lesional skin after the addition of SsAgs. Our results indicated that KCs from lesional skin appear to react differently to SsAgs and increased proinflammatory cytokine production in response to SsAgs may contribute to the pathogenesis of AD.
Tumor Necrosis Factor-alpha/biosynthesis/genetics
;
*Superantigens/administration & dosage/immunology
;
Staphylococcus aureus/*immunology/pathogenicity
;
Male
;
Keratinocytes/immunology/*microbiology
;
Interleukin-1/biosynthesis/genetics
;
Inflammation Mediators/metabolism
;
Humans
;
HLA-DR Antigens/metabolism
;
Enterotoxins/administration & dosage/immunology
;
Dermatitis, Atopic/etiology/immunology/*microbiology
;
DNA, Complementary/genetics
;
Case-Control Studies
;
Base Sequence
;
Bacterial Toxins/administration & dosage/immunology
;
Antigens, CD1/metabolism
;
Adult
3.Distribution of the putative virulence factor encoding gene sheta in Staphylococcus hyicus strains of various origins.
Talah KANBAR ; Andrey V VOYTENKO ; Jorg ALBER ; Christoph LAMMLER ; Reinhard WEISS ; Vladimir N SKVORTZOV
Journal of Veterinary Science 2008;9(3):327-329
In the present study, Staphylococcus (S.) hyicus strains isolated in Russia (n = 23) and Germany (n = 17) were investigated for the prevalence of the previously described genes sheta and shetb. Sheta was detected in 16 S. hyicus strains. Sheta-positive strains were mainly found among strains isolated from exudative epidermitis, and frequently together with the exfoliative toxin-encoding genes exhD and exhC. Partial sequencing of sheta in a single S. hyicus strain revealed an almost complete match with the sheta sequence obtained from GenBank. None of the S. hyicus strains displayed a positive reaction with the shetb-specific oligonucleotide primer used in the present study. According to the present results, the exotoxin encoding gene sheta seems to be distributed among S. hyicus strains in Russia and Germany. The toxigenic potential of this exotoxin, which does not have the classical structure of a staphylococcal exfoliative toxin, remains to be elucidated.
Animals
;
Cattle
;
Cattle Diseases/epidemiology/microbiology
;
DNA Primers
;
Dog Diseases/epidemiology/microbiology
;
Dogs
;
Epidermitis, Exudative, of Swine/epidemiology
;
Exfoliatins/*genetics/immunology
;
Germany
;
Pneumonia/epidemiology/veterinary
;
Russia
;
Staphylococcal Infections/immunology/veterinary
;
Staphylococcus aureus/genetics/*pathogenicity
;
Swine
;
Swine Diseases/epidemiology
;
Virulence/*genetics
;
Virulence Factors/genetics/immunology
4.Nitric oxide mediated Staphylococcus aureus pathogenesis and protective role of nanoconjugated vancomycin.
Subhankari Prasad CHAKRABORTY ; Santanu Kar MAHAPATRA ; Sumanta Kumar SAHU ; Sourav CHATTOPADHYAY ; Panchanan PRAMANIK ; Somenath ROY
Asian Pacific Journal of Tropical Biomedicine 2011;1(2):102-109
OBJECTIVETo test the survival of Staphylococcus aureus (S. aureus) inside lymphocyte that contributes to the pathogenesis of infection and possible anti-inflammatory and antioxidative effect of nanoconjugated vancomycin against in vivo S. aureus infection in a dose and duration dependent manner.
METHODS5×10(6) CFU/mL vancomycin-sensitive S. aureus (VSSA) and vancomycin-resistive S. aureus (VRSA) were challenged in Swiss male mice for 3 days, 5 days, 10 days and 15 days, respectively. Bacteremia and inflammatory parameters were observed to evaluate the duration for development of VSSA and VRSA infection. 100 mg/kg bw/day and 500 mg/kg bw/day nanoconjugated vancomycin were administrated to VSSA and VRSA infected group for 5 days. Bacteremia, inflammatory parameters and oxidative stress related parameters were tested to observe the effective dose of nanoconjugated vancomycin against VSSA and VRSA infection. Nanoconjugated vancomycin was treated at a dose of 100 mg/kg bw/day and 500 mg/kg bw/day, respectively, to VSSA and VRSA infected group for successive 5 days, 10 days and 15 days. Bacteremia, inflammatory parameters and oxidative stress related parameters were observed to assess the effective duration of nanoconjugated vancomycin against VSSA and VRSA infection.
RESULTSThe result revealed that in vivo VSSA and VRSA infection developed after 5 days of challenge by elevating the NO generation in lymphocyte and serum inflammatory markers. Administration with nanoconjugated vancomycin to VSSA and VRSA infected group at a dose of 100 mg/kg bw/day and 500 mg/kg bw/day, respectively, for successive 10 days eliminated bacterimia, decreased NO generation in lymphocyte, serum inflammatory markers and increased antioxidant enzyme status.
CONCLUSIONSThese findings suggest, in vivo challenge of VSSA and VRSA for 5 days can produce the highest degree of damage in lymphocyte which can be ameliorated by treatment with nanoconjugated vancomycin for 10 successive days.
Animals ; Anti-Bacterial Agents ; administration & dosage ; chemistry ; Bacteremia ; drug therapy ; immunology ; microbiology ; Drug Delivery Systems ; Humans ; Male ; Mice ; Nanoparticles ; chemistry ; Nitric Oxide ; immunology ; Staphylococcal Infections ; drug therapy ; immunology ; microbiology ; Staphylococcus aureus ; drug effects ; pathogenicity ; physiology ; Vancomycin ; administration & dosage ; chemistry ; Vancomycin Resistance