1.Research advance on the pathogenesis of autosomal recessive spastic ataxia of Charlevoix-Saguenay.
Rong FU ; Man DING ; Zuneng LU
Chinese Journal of Medical Genetics 2023;40(1):121-124
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare and early-onset neurodegenerative disease caused by variants of the SACS gene which maps to chromosome 13q11 and encodes sacsin protein. Sacsin is highly expressed in large motor neurons, in particular cerebellar Purkinje cells. This article has provided a review for the structure and function of sacsin protein and the mechanisms underlying abnormalities of sacsin in ARSACS disease.
Humans
;
Spinocerebellar Ataxias/pathology*
;
Ataxia/genetics*
;
Muscle Spasticity/genetics*
2.Molecular basis of spinocerebellar ataxias subtype caused by nucleotide repeat expansion in noncoding region.
Chinese Journal of Medical Genetics 2008;25(3):293-296
Hereditary spinocerebellar ataxias(SCA) are mainly caused by trinucleotide (CAG/CAA) repeat expansion in open reading frames of corresponding gene. However, SCA8, SCA10 and SCA12 are caused by nucleotide repeat expansion in noncoding region. Recent researches focus on the pathogenesis and hereditary traits, including the instability of nucleotide repeat, the alteration of penetrance, the bias of gender inheritance and the anticipation. The pathogenesis of these three SCA subtypes is different from other subtypes because the repeat expansion in noncoding region has mild influence on translation of polyQ protein. We suggest that the interference on DNA transcription by the abnormal nucleotide expansion, the post-transcriptional toxic effect of abnormal RNA, and the mechanism of bidirectional expression of repeat expansion transcripts play a critical role on SCA8, SCA10 and SCA12 pathogenesis.
Humans
;
Models, Biological
;
Spinocerebellar Ataxias
;
genetics
;
Trinucleotide Repeat Expansion
;
genetics
4.Diagnosis of a patient with Spinocerebellar ataxia type 29 due to a novel variant of ITPR1 gene.
Ya Nan ZHI ; Jiao LIU ; Cheng ZHEN ; Juan LI ; Fangna WANG ; Yan LUO ; Pingping ZHANG ; Mingming ZHANG ; Yali LI
Chinese Journal of Medical Genetics 2023;40(1):76-80
OBJECTIVE:
To explore the clinical and genetic characteristics of a child with spinocerebellar ataxia type 29 (SCA29) due to novel variant of the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) gene.
METHODS:
The child was subjected high-throughput sequencing, and candidate variant was verified by Sanger sequencing of his family members.
RESULTS:
The child was found to harbor a c.800C>T (p.T267M) variant of the ITPR1 gene, which was not found in his parents and their fetus. The variant has occurred in a hotspot of the ITPR1 gene variants and was unreported before in China. Based on his clinical and genetic characteristics, the child was diagnosed with SCA29.
CONCLUSION
The novel heterozygous c.800C>T (p.T267M) of the ITPR1 gene probably underlay the SCA29 in this child.
Child
;
Humans
;
Family
;
Inositol 1,4,5-Trisphosphate Receptors/genetics*
;
Mutation
;
Spinocerebellar Ataxias/genetics*
;
Spinocerebellar Degenerations
5.Spinocerebellar ataxia type 2 in seven Korean families: CAG trinucleotide expansion and clinical characteristics.
Jong Min KIM ; Sue Shin SHIN ; Ji Yeon KIM ; Se Ick JOO ; Sung Sup PARK ; Jae Woo KIM ; Beon S JEON
Journal of Korean Medical Science 1999;14(6):659-664
Studies on spinocerebellar ataxias (SCA) have been hampered by a lack of disease markers. Clinical and pathological heterogeneity also made the classification unreliable. Linkage studies established that there are multiple subtypes of SCA. Five types are found to have unstable CAG expansion; the diagnosis can be established by molecular genetic study. Therefore, we systemically screened degenerative ataxia patients for these five SCA types, and identified eight patients with SCA2 (seven from six families and one sporadic case). This paper presents the clinical information on the seven patients, whose clinical information was available in detail. CAG repeat expansion in the patients ranged from 38 to 47 (normal control, 19 to 27). The onset ages ranged from 16 to 41 with 27.1 years as the mean, which correlated inversely with repeat lengths. All patients presented dysarthria and gait ataxia. Upper limb dysmetria or dysdiadochokinesia appeared later but progressed, causing severe disability. Slow saccade (4 patients in 7) and decreased DTR (4 in 7) were common. MRIs showed severe atrophy of the brainstem and cerebellum in all patients. We conclude that SCA2 is the most frequent type in Korea and carries rather pure cerebellar syndrome, slow saccade, and hyporeflexia.
Adolescence
;
Adult
;
Age of Onset
;
Brain/pathology
;
DNA Mutational Analysis
;
Female
;
Human
;
Korea
;
Lymphocytes
;
Magnetic Resonance Imaging
;
Male
;
Spinocerebellar Ataxias/genetics*
;
Spinocerebellar Ataxias/diagnosis
;
Spinocerebellar Ataxias/blood
;
Trinucleotide Repeats/genetics*
6.A pedigree affected with spinocerebellar ataxia type III.
Chinese Journal of Medical Genetics 2017;34(3):463-464
Adult
;
Ataxin-3
;
genetics
;
Female
;
Humans
;
Male
;
Middle Aged
;
Pedigree
;
Repressor Proteins
;
genetics
;
Spinocerebellar Ataxias
;
genetics
7.Genetic analysis of a child with Charlevoix-Saguenay spastic ataxia due to variant of SACS gene.
Huan LUO ; Xiaolu CHEN ; Xueyi RAO ; Yajun SHEN ; Jinfeng LIU ; Zuozhen YANG ; Jing GAN
Chinese Journal of Medical Genetics 2023;40(5):558-562
OBJECTIVE:
To explore the clinical feature and genetic variant of a child with autosomal recessive Charlevoix-Saguenay type spastic ataxia (ARSACS).
METHODS:
Clinical data of a child who was admitted to the West China Second Hospital of Sichuan University on April 30, 2021 was collected. Whole exome sequencing (WES) was carried out for the child and his parents. Candidate variants were verified by Sanger sequencing and bioinformatic analysis based on the guidelines from the American College of Medical Genetics and Genomics (ACMG).
RESULTS:
The child, a 3-year-and-3-month-old female, had a complain of "walking instability for over a year". Physical and laboratory examination revealed progressive and aggravated gait instability, increased muscle tone of the right limbs, peripheral neuropathy of the lower limbs, and thickening of retinal nerve fiber layer. The results of WES revealed that she has harbored a maternally derived heterozygous deletion of exons 1 to 10 of the SACS gene, in addition with a de novo heterozygous c.3328dupA variant in exon 10 of the SACS gene. Based on the ACMG guidelines, the exons 1-10 deletion was rated as likely pathogenic (PVS1+PM2_Supporting), and the c.3328dupA was rated as a pathogenic variant (PVS1_Strong+PS2+PM2_Supporting). Neither variant was recorded in the human population databases.
CONCLUSION
The c.3328dupA variant and the deletion of exons 1-10 of the SACS gene probably underlay the ARSACS in this patient.
Female
;
Humans
;
Heat-Shock Proteins/genetics*
;
Muscle Spasticity/genetics*
;
Mutation
;
Spinocerebellar Ataxias/pathology*
;
Child, Preschool
9.Advance in research on spinocerebellar ataxia 2.
Feng JING ; Dan YANG ; Tao CHEN
Chinese Journal of Medical Genetics 2018;35(2):284-287
Spinocerebellar ataxia type 2 (SCA2) is a rare autosomal dominant progressive degenerative disease of the nervous system, which is characterized by a progressive cerebellar syndrome associated with saccadic eye scan, peripheral neuropathy, cognitive disorders, and other multisystem features. The gene predisposing to SCA2 has been mapped, which encodes the ataxin 2 protein. A CAG repeat expansion in the coding region of ATXN2 gene can cause extension of polyglutamine chain in the protein. This paper reviews recent progress made in the research on SCA2 in regard to its clinical features, pathology, etiology, pathogenesis and treatment.
Animals
;
Ataxin-2
;
genetics
;
Humans
;
Spinocerebellar Ataxias
;
etiology
;
genetics
;
pathology
;
therapy
10.Spinocerebellar ataxia-a family with eight cases.
Yan LI ; Ran AN ; Yanming XU
Chinese Journal of Medical Genetics 2014;31(4):503-503
Adolescent
;
Adult
;
Child
;
Female
;
Humans
;
Male
;
Pedigree
;
Spinocerebellar Ataxias
;
diagnosis
;
genetics
;
Young Adult