1.Spatiotemporal Dynamics of the Molecular Expression Pattern and Intercellular Interactions in the Glial Scar Response to Spinal Cord Injury.
Leilei GONG ; Yun GU ; Xiaoxiao HAN ; Chengcheng LUAN ; Chang LIU ; Xinghui WANG ; Yufeng SUN ; Mengru ZHENG ; Mengya FANG ; Shuhai YANG ; Lai XU ; Hualin SUN ; Bin YU ; Xiaosong GU ; Songlin ZHOU
Neuroscience Bulletin 2023;39(2):213-244
Nerve regeneration in adult mammalian spinal cord is poor because of the lack of intrinsic regeneration of neurons and extrinsic factors - the glial scar is triggered by injury and inhibits or promotes regeneration. Recent technological advances in spatial transcriptomics (ST) provide a unique opportunity to decipher most genes systematically throughout scar formation, which remains poorly understood. Here, we first constructed the tissue-wide gene expression patterns of mouse spinal cords over the course of scar formation using ST after spinal cord injury from 32 samples. Locally, we profiled gene expression gradients from the leading edge to the core of the scar areas to further understand the scar microenvironment, such as neurotransmitter disorders, activation of the pro-inflammatory response, neurotoxic saturated lipids, angiogenesis, obstructed axon extension, and extracellular structure re-organization. In addition, we described 21 cell transcriptional states during scar formation and delineated the origins, functional diversity, and possible trajectories of subpopulations of fibroblasts, glia, and immune cells. Specifically, we found some regulators in special cell types, such as Thbs1 and Col1a2 in macrophages, CD36 and Postn in fibroblasts, Plxnb2 and Nxpe3 in microglia, Clu in astrocytes, and CD74 in oligodendrocytes. Furthermore, salvianolic acid B, a blood-brain barrier permeation and CD36 inhibitor, was administered after surgery and found to remedy fibrosis. Subsequently, we described the extent of the scar boundary and profiled the bidirectional ligand-receptor interactions at the neighboring cluster boundary, contributing to maintain scar architecture during gliosis and fibrosis, and found that GPR37L1_PSAP, and GPR37_PSAP were the most significant gene-pairs among microglia, fibroblasts, and astrocytes. Last, we quantified the fraction of scar-resident cells and proposed four possible phases of scar formation: macrophage infiltration, proliferation and differentiation of scar-resident cells, scar emergence, and scar stationary. Together, these profiles delineated the spatial heterogeneity of the scar, confirmed the previous concepts about scar architecture, provided some new clues for scar formation, and served as a valuable resource for the treatment of central nervous system injury.
Mice
;
Animals
;
Gliosis/pathology*
;
Cicatrix/pathology*
;
Spinal Cord Injuries
;
Astrocytes/metabolism*
;
Spinal Cord/pathology*
;
Fibrosis
;
Mammals
;
Receptors, G-Protein-Coupled
2.Changes in synapses and axons demonstrated by synaptophysin immunohistochemistry following spinal cord compression trauma in the rat and mouse.
Gui-Lin LI ; Mohammad FAROOQUE ; Jonas ISAKSSON ; Yngve OLSSON
Biomedical and Environmental Sciences 2004;17(3):281-290
OBJECTIVE AND METHODSTo evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9.
RESULTSNormal animals showed numerous fine dots of synaptophysin immunoreactivity in the gray matter. An increase in synaptophysin immunoreactivity was observed in the neuropil and synapses at the surface of motor neurons of the anterior horns in the Th8-9 segments lost immunoreactivity at 4-hour point after trauma. The immunoreactive synapses reappeared around motor neurons at 9-day point. Unexpected accumulation of synaptophysin immunoreactivity occurred in injured axons of the white matter of the compressed spinal cord.
CONCLUSIONSynaptic changes were important components of secondary injuries in spinal cord trauma. Loss of synapses on motor neurons may be one of the factors causing motor dysfunction of hind limbs and formation of new synapses may play an important role in recovery of motor function. Synaptophysin immunohistochemistry is also a good tool for studies of axonal swellings in spinal cord injuries.
Animals ; Axons ; metabolism ; pathology ; Female ; Immunohistochemistry ; Male ; Mice ; Mice, Inbred Strains ; Rats ; Rats, Sprague-Dawley ; Spinal Cord Compression ; Spinal Cord Injuries ; metabolism ; pathology ; Synapses ; metabolism ; pathology ; Synaptophysin ; metabolism
3.Correlation between magnetic resonance T2 image signal intensity ratio and cell apoptosis in a rabbit spinal cord cervical myelopathy model.
Lei MA ; Di ZHANG ; Wei CHEN ; Yong SHEN ; Yingze ZHANG ; Wenyuan DING ; Wei ZHANG ; Linfeng WANG ; Dalong YANG
Chinese Medical Journal 2014;127(2):305-313
BACKGROUNDCervical spondylotic myelopathy (CSM) is a common cause of disability in elderly patients. Previous studies have shown that spinal cord cell apoptosis due to spinal cord compression plays an important role in the pathology of myelopathy. Although changes in magnetic resonance imaging (MRI) T2 signal intensity ratio (SIR) are considered to be an indicator of CSM, little information is published supporting the correlation between changes in MRI signal and pathological changes. This study aims to testify the correlation between MRI T2 SIR changes and cell apoptosis using a CSM animal model.
METHODSForty-eight rabbits were randomly assigned to four groups: one control group and three experimental chronic compression groups, with each group containing 12 animals. Chronic compression of the cervical spinal cord was implemented in the experimental groups by implanting a screw in the C3 vertebra. The control group underwent sham surgery. Experimental groups were observed for 3, 6, or 9 months after surgery. MRI T2-weighted SIR Tarlov motor scores and cortical somatosensory-evoked potentials (CSEPs) were periodically monitored. At each time point, rabbits from one group were sacrificed to determine the level of apoptosis by histology (n = 6) and Western blotting (n = 6).
RESULTSTarlov motor scores in the compression groups were lower at all time points than the control group scores, with the lowest score at 9 months (P < 0.001). Electrophysiological testing showed a significantly prolonged latency in CSEP in the compression groups compared with the control group. All rabbits in the compression groups showed higher MRI T2 SIR in the injury epicenter compared with controls, and higher SIR was also found at 9 months compared with 3 or 6 months. Histological analysis showed significant apoptosis in the spinal cord tissue in the compression groups, but not in the control group. There were significant differences in apoptosis degree over time (P < 0.001), with the 9-month group displaying the most severe spinal cord apoptosis. Spearman's rank correlation test showed that there was close relation between MRI SIR and degree of caspase-3 expression in Western blotting (r = 0.824. P < 0.001).
CONCLUSIONSClear apoptosis of spinal cord tissue was observed during chronic focal spinal compression. Changes in MRI T2 SIR may be related to the severity of the apoptosis in cervical spinal cord.
Animals ; Apoptosis ; physiology ; Cervical Cord ; metabolism ; pathology ; Magnetic Resonance Imaging ; Male ; Rabbits ; Spinal Cord Compression ; metabolism ; pathology
4.Modulation of Pain and Itch by Spinal Glia.
Neuroscience Bulletin 2018;34(1):178-185
Chronic pain and itch are a pathological operation of the somatosensory system at the levels of primary sensory neurons, spinal cord and brain. Pain and itch are clearly distinct sensations, and recent studies have revealed the separate neuronal pathways that are involved in each sensation. However, the mechanisms by which these sensations turn into a pathological chronic state are poorly understood. A proposed mechanism underlying chronic pain and itch involves abnormal excitability in dorsal horn neurons in the spinal cord. Furthermore, an increasing body of evidence from models of chronic pain and itch has indicated that synaptic hyperexcitability in the spinal dorsal horn might not be a consequence simply of changes in neurons, but rather of multiple alterations in glial cells. Thus, understanding the key roles of glial cells may provide us with exciting insights into the mechanisms of chronicity of pain and itch, and lead to new targets for treating chronic pain and itch.
Animals
;
Chronic Pain
;
pathology
;
Humans
;
Neuralgia
;
metabolism
;
Pruritus
;
pathology
;
Sensory Receptor Cells
;
physiology
;
Spinal Cord
;
pathology
5.Expression of tau-related protein in spinal cord of patients with Alzheimer's disease.
Yan-jun GUO ; Lu-ning WANG ; Ming-wei ZHU ; Hong-hong ZHANG ; Ya-zhuo HU ; Zhi-tao HAN ; Ji-mei LI ; De-xin WANG
Chinese Journal of Pathology 2011;40(3):161-164
OBJECTIVETo study the expression of tau-related protein in spinal cord of Chinese patients with Alzheimer's disease.
METHODSGallays-Braak stain and immunohistochemical study for tau protein (AT8) were carried out in the spinal cord tissue (T2, T8, T10, L2 and S2 segments) of 3 Chinese patients with Alzheimer's disease. Seven age-matched cases without evidence of dementia or neurologic disease were used as controls.
RESULTSNeurofibrillary tangles were identified in the neurons of anterior horn in 2 Alzheimer's disease cases but none was observed in the controls. Tau-positive axons and astroglia were detected in all Alzheimer's disease cases. Tau immunoreactivity in spinal cord of the patients correlated with that in brain tissue.
CONCLUSIONThe expression of tau-related protein is demonstrated in the spinal cord of Alzheimer's disease patients suggesting that axonal transport defect may play a role in the pathogenesis of Alzheimer's disease.
Aged ; Alzheimer Disease ; metabolism ; pathology ; Axonal Transport ; Axons ; metabolism ; pathology ; Humans ; Male ; Neurofibrillary Tangles ; metabolism ; pathology ; Phosphorylation ; Spinal Cord ; metabolism ; pathology ; tau Proteins ; metabolism
6.CircFhit Modulates GABAergic Synaptic Transmission via Regulating the Parental Gene Fhit Expression in the Spinal Dorsal Horn in a Rat Model of Neuropathic Pain.
Ting XU ; Zhen-Yu LI ; Meng LIU ; Su-Bo ZHANG ; Huan-Huan DING ; Jia-Yan WU ; Su-Yan LIN ; Jun LIU ; Jia-You WEI ; Xue-Qin ZHANG ; Wen-Jun XIN
Neuroscience Bulletin 2023;39(6):947-961
Effective treatments for neuropathic pain are lacking due to our limited understanding of the mechanisms. The circRNAs are mainly enriched in the central nervous system. However, their function in various physiological and pathological conditions have yet to be determined. Here, we identified circFhit, an exon-intron circRNA expressed in GABAergic neurons, which reduced the inhibitory synaptic transmission in the spinal dorsal horn to mediate spared nerve injury-induced neuropathic pain. Moreover, we found that circFhit decreased the expression of GAD65 and induced hyperexcitation in NK1R+ neurons by promoting the expression of its parental gene Fhit in cis. Mechanistically, circFhit was directly bound to the intronic region of Fhit, and formed a circFhit/HNRNPK complex to promote Pol II phosphorylation and H2B monoubiquitination by recruiting CDK9 and RNF40 to the Fhit intron. In summary, we revealed that the exon-intron circFhit contributes to GABAergic neuron-mediated NK1R+ neuronal hyperexcitation and neuropathic pain via regulating Fhit in cis.
Rats
;
Animals
;
Posterior Horn Cells/pathology*
;
Spinal Cord Dorsal Horn/metabolism*
;
Neuralgia
;
Synaptic Transmission
7.Intramedullary Clear Cell Ependymoma in the Thoracic Spinal Cord: A Case with Its Crush Smear and Ultrastructural Findings.
Na Rae KIM ; Dong Hae CHUNG ; Sang Koo LEE ; Seung Yeon HA
Journal of Korean Medical Science 2007;22(Suppl):S149-S153
Clear cell ependymoma was included in the World Health Organization classification of the nervous system in 1993, and all the reported cases, except for two in the spinal cord, were located in the brain, mainly in the supratentorial compartment. Astrocytomas outnumber ependymomas in the spinal cord, and the two entities partly share cytologic findings such as long, bipolar glial processes and oval to round nuclei resembling those seen in pilocytic astrocytoma. Here, we report the first Korean case of intramedullary clear cell ependymoma of the spinal cord, which is the third case situated in the spinal cord in the literature. The crush smear revealed round-to-oval nuclei with occasional nuclear eosinophilic inclusion and rare nuclear grooves. Cytoplasm had fluffy eosinophilic glial processes, and acellular fibrillary zone. On hematoxylin-eosin stain, oval to round tumor cells had large central nuclei with indistinct nucleoli and a moderate amount of clear cytoplasm, i.e. perinuclear halo, mimicking oligodendroglioma. Perivascular pseudorosettes and ependymal clefts were rarely found. In retrospect, perinuclear halo was absent on crush smears. Ultrastructurally, they had extensive surface microvilli and edematous cytoplasm filled with abundant glial filaments and microlumens with or without microvilli. Intercellular long cell junctions of the zipper-like zonula adherens type were found.
Aged
;
Ependymoma/metabolism/*pathology/ultrastructure
;
Female
;
Humans
;
Immunohistochemistry
;
Microscopy, Electron, Transmission
;
Spinal Cord Neoplasms/metabolism/*pathology/ultrastructure
8.Effect of Small Knife Needle on β-enorpin and Enkehalin Contents of Tansverse Process Syndrome of the Third Vertebra.
Nai-gang LIU ; Chang-qing GUO ; Hong-mei SUN ; Xiao-hong LI ; Hai-xia WU ; Hong XU
Chinese Journal of Integrated Traditional and Western Medicine 2016;36(4):476-479
OBJECTIVETo explore the analgesic mechanism of small knife needle for treating transverse process syndrome of the third vertebra (TPSTV) by observing peripheral and central changesof β-endorphin (β-EP) and enkephalin (ENK) contents.
METHODSTotally 30 Japanese white big-ear rabbits of clean grade were divided into 5 groups according to random digit table, i.e., the normal control group, the model group, the small knife needle group, the electroacupunture (EA) group, and the small knife needle plus EA group, 6 in each group. The TPSTV model was established by inserting a piece of gelatin sponge into the left transverse process of 3rd lumbar vertebrae. Rabbits in the small knife needlegroup were intervened by small knife needle. Those in the EA group were intervened by EA at bilateralWeizhong (BL40). Those in the small knife needle plus EA group were intervened by small knife needleand EA at bilateral Weizhong (BL40). Contents of β-EP and ENK in plasma, muscle, spinal cord, and hypothalamus were determined after sample collection at day 28 after modeling.
RESULTSCompared with the normal control group, contents of β-EP and ENK in plasma and muscle increased significantly, and contents of β-EP and ENK in spinal cord and hypothalamus decreased significantly in the model group (P < 0.05, P < 0.01). Contents of β-EP and ENK approximated normal levels in the three treatment groups after respective treatment. Compared with the model group, the content of β-EP in muscle decreased, and contents of β-EP and ENK in hypothalamus increased in the three treatment groups after respective treatment (P < 0.05). There were no significant difference among the three treatment groups (P > 0.05).
CONCLUSIONSSmall knife needle treatment and EA had benign regulation on peripheral and central β-EP and ENK in TPSTV rabbits. Small knife needle treatment showed better effect than that of EA.
Acupuncture Points ; Animals ; Electroacupuncture ; Enkephalins ; metabolism ; Hypothalamus ; metabolism ; Lumbar Vertebrae ; pathology ; Muscle, Skeletal ; metabolism ; Needles ; Rabbits ; Random Allocation ; Spinal Cord ; metabolism ; Spinal Diseases ; therapy ; beta-Endorphin ; metabolism
9.Role of tumor necrosis factor-alpha in spinal cord injury of rabbits with decompression sickness.
Cuicui WANG ; Xiaohong LIU ; Ruixia QI ; Yongcheng CAO ; Ruiqi MAO ; Liquan BI ; Ming GENG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(10):771-773
OBJECTIVETo observe the pathological changes in rabbits with spinal cord injury induced by decompression sickness (DCS), and to investigate the role of tumor necrosis factor-alpha (TNF-α) in spinal cord injury induced by DCS.
METHODSRabbits were randomly divided into normal control group, DCS group, and safe decompression group. The rabbit model of DCS was established. Light microscopy, real-time PCR, and immunohistochemical method were used to observe the pathomorphological changes in the thoracolumbar spinal cord and the mRNA and protein expression of TNF-α, respectively. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) was used to observe the apoptosis in the spinal cord.
RESULTSIn the DCS group, cavities formed in the white matter of spinal cord and gliosis occurred around necrotic areas. Moreover, the mRNA and protein expression of TNF-α was significantly higher in the DCS group than in the normal control group and the safe decompression group (P<0.01). The results of TUNEL showed that the number of positive apoptotic cells was significantly larger in the DCS group than in the normal control group and the safe decompression group (P<0.05).
CONCLUSIONApoptosis plays an important role in spinal cord injury induced by DCS. In the early stage of DCS, the massive release of TNF-α initiates apoptosis and contributes to the pathological changes in spinal cord injury induced by DCS.
Animals ; Apoptosis ; Decompression Sickness ; metabolism ; pathology ; Disease Models, Animal ; In Situ Nick-End Labeling ; RNA, Messenger ; Rabbits ; Spinal Cord ; pathology ; Spinal Cord Injuries ; metabolism ; pathology ; Tumor Necrosis Factor-alpha ; metabolism
10.Acute cardiac injury activates interleukin-1 beta signaling in the spinal cord.
Jianhua LIU ; Di FU ; Junmei XU ; Xianghang LU ; Ruping DAI
Journal of Central South University(Medical Sciences) 2009;34(3):210-215
OBJECTIVE:
To investigate the effect of acute cardiac injury on the activation of interleukin-1 beta (IL-1 beta) signaling in the spinal cord.
METHODS:
Acute cardiac injury rat model was established by intra-myocardial injection of formalin through diaphragm. IL-1 beta expression was determined by Western blot, immunohistochemistry and in situ hybridization. The DNA binding activities of 2 IL-1 beta transcription factors, activator protein (AP)-1 and nuclear factor kB (NF-kappaB) were measured by electrophoretic mobility shift assay (EMSA).
RESULTS:
After cardiac injury, the IL-1 beta protein level was dramatically upregulated in the spinal cord. The upregulated IL-1 beta was mainly expressed in the neurons in the lamina II approximately IV of the spinal cord. In response to cardiac injury, the DNA binding activities of NF-kappaB and AP-1 were greatly activated.
CONCLUSION
Acute cardiac injury could activate the spinal IL-1 beta signaling, which, in turn, may be involved in the progression of heart failure after injury.
Animals
;
Interleukin-1beta
;
genetics
;
metabolism
;
Male
;
Myocardial Reperfusion Injury
;
chemically induced
;
metabolism
;
pathology
;
Myocardium
;
metabolism
;
pathology
;
RNA, Messenger
;
genetics
;
metabolism
;
Rats
;
Rats, Wistar
;
Signal Transduction
;
Spinal Cord
;
metabolism