1.Fermentative production of tetraacetyl phytosphingosine: a review.
Liuwei CUI ; Kaifeng WANG ; Xiaojun JI
Chinese Journal of Biotechnology 2023;39(6):2204-2214
Tetraacetyl phytosphingosine (TAPS) is an excellent raw material for natural skin care products. Its deacetylation leads to the production of phytosphingosine, which can be further used for synthesizing the moisturizing skin care product ceramide. For this reason, TAPS is widely used in the skin care oriented cosmetics industry. The unconventional yeast Wickerhamomyces ciferrii is the only known microorganism that can naturally secrete TAPS, and it has become the host for the industrial production of TAPS. This review firstly introduces the discovery, functions of TAPS, and the metabolic pathway for TAPS biosynthesis is further introduced. Subsequently, the strategies for increasing the TAPS yield of W. ciferrii, including haploid screening, mutagenesis breeding and metabolic engineering, are summarized. In addition, the prospects of TAPS biomanufacturing by W. ciferrii are discussed in light of the current progresses, challenges, and trends in this field. Finally, guidelines for engineering W. ciferrii cell factory using synthetic biology tools for TAPS production are also presented.
Sphingosine
;
Ceramides
;
Metabolic Engineering
;
Synthetic Biology
2.Altered Levels of Sphingosine and Sphinganine in Psoriatic Epidermis.
Sung Hyuk MOON ; Ju Young KIM ; Eun Hwa SONG ; Min Kyung SHIN ; Yun Hi CHO ; Nack In KIM
Annals of Dermatology 2013;25(3):321-326
BACKGROUND: Ceramides are the main lipid component of the stratum corneum and are a structurally heterogeneous and complex group of sphingolipids of which sphingoid bases are the basic structural constituents. Altered levels of sphingoid bases have been reported in skin conditions that involve dryness and barrier disruption, including atopic dermatitis. OBJECTIVE: The purpose of this study was to investigate the altered levels of sphingoid bases in psoriatic epidermis and their relationship with the clinical severity of the psoriasis. METHODS: Samples from the lesional and non-lesional epidermis were obtained from eight psoriasis patients. Levels of sphingosine and sphinganine were analyzed by high-performance liquid chromatography. The expression of ceramide synthase and ceramidase proteins, which are related to sphingosine and sphinganine metabolism, were measured using Western blot analysis. RESULTS: Levels of sphingosine and sphinganine in the lesional epidermis were significantly higher than those in the non-lesional epidermis. Although there was no altered ceramide synthase and ceramidase, there was a highly significant positive correlation between the % change of ceramidase, the degradative enzyme of ceramide into sphingosine, and the Psoriasis Area Severity Index (PASI) score. CONCLUSION: The levels of sphingosine and sphinganine were significantly increased in psoriatic epidermis and the % change of ceramidase was positively correlated with the clinical severity of psoriasis.
Blotting, Western
;
Ceramidases
;
Ceramides
;
Chromatography, Liquid
;
Epidermis
;
Humans
;
Oxidoreductases
;
Proteins
;
Psoriasis
;
Skin
;
Sphingolipids
;
Sphingosine
3.Altered Levels of Sphingosine and Sphinganine in Psoriatic Epidermis.
Sung Hyuk MOON ; Ju Young KIM ; Eun Hwa SONG ; Min Kyung SHIN ; Yun Hi CHO ; Nack In KIM
Annals of Dermatology 2013;25(3):321-326
BACKGROUND: Ceramides are the main lipid component of the stratum corneum and are a structurally heterogeneous and complex group of sphingolipids of which sphingoid bases are the basic structural constituents. Altered levels of sphingoid bases have been reported in skin conditions that involve dryness and barrier disruption, including atopic dermatitis. OBJECTIVE: The purpose of this study was to investigate the altered levels of sphingoid bases in psoriatic epidermis and their relationship with the clinical severity of the psoriasis. METHODS: Samples from the lesional and non-lesional epidermis were obtained from eight psoriasis patients. Levels of sphingosine and sphinganine were analyzed by high-performance liquid chromatography. The expression of ceramide synthase and ceramidase proteins, which are related to sphingosine and sphinganine metabolism, were measured using Western blot analysis. RESULTS: Levels of sphingosine and sphinganine in the lesional epidermis were significantly higher than those in the non-lesional epidermis. Although there was no altered ceramide synthase and ceramidase, there was a highly significant positive correlation between the % change of ceramidase, the degradative enzyme of ceramide into sphingosine, and the Psoriasis Area Severity Index (PASI) score. CONCLUSION: The levels of sphingosine and sphinganine were significantly increased in psoriatic epidermis and the % change of ceramidase was positively correlated with the clinical severity of psoriasis.
Blotting, Western
;
Ceramidases
;
Ceramides
;
Chromatography, Liquid
;
Epidermis
;
Humans
;
Oxidoreductases
;
Proteins
;
Psoriasis
;
Skin
;
Sphingolipids
;
Sphingosine
4.Intercellular Lipid Mediators and GPCR Drug Discovery.
Biomolecules & Therapeutics 2013;21(6):411-422
G-protein-coupled receptors (GPCR) are the largest superfamily of receptors responsible for signaling between cells and tissues, and because they play important physiological roles in homeostasis, they are major drug targets. New technologies have been developed for the identification of new ligands, new GPCR functions, and for drug discovery purposes. In particular, intercellular lipid mediators, such as, lysophosphatidic acid and sphingosine 1-phosphate have attracted much attention for drug discovery and this has resulted in the development of fingolimod (FTY-720) and AM095. The discovery of new intercellular lipid mediators and their GPCRs are discussed from the perspective of drug development. Lipid GPCRs for lysophospholipids, including lysophosphatidylserine, lysophosphatidylinositol, lysophosphatidylcholine, free fatty acids, fatty acid derivatives, and other lipid mediators are reviewed.
Drug Discovery*
;
Fatty Acids, Nonesterified
;
Homeostasis
;
Ligands
;
Lysophosphatidylcholines
;
Lysophospholipids
;
Receptors, G-Protein-Coupled
;
Sphingosine
;
Fingolimod Hydrochloride
5.Influence of S1PR5 Defect on the Lymphocyte Distribution in Mice.
Zhen-Yang GU ; Xiao-Li ZHAO ; Nan YAN ; Li WANG ; Fei-Yang WANG ; Li-Li WANG ; Chun-Ji GAO
Journal of Experimental Hematology 2016;24(4):1168-1172
BACKGROUNDThe sphingosine 1-phosphate (S1P) receptors (S1PRs) are a group of G protein-coupled receptors expressed on the surface of lymphocytes. The interaction between S1P and S1PRs plays a significant role in the migration and distribution of lymphocytes.
OBJECTIVETo investigate the influence of S1PR5 defect on the lymphocytes distribution in mice.
METHODSThe distribution of different subsets of lymphocyte in the mice with S1PR5 defect was examined by flow cytometry.
RESULTSCompared with wild type mice, the number of NK cells in the peripheral blood (PB) and spleen (SP) from the mice with S1PR5 defect decreased very significantly 〔PB: 6.4±0.45% vs 2.2±0.47(P<0.01,n=3);SP: 3.0±0.91% vs 0.68±0.14%(P<0.05,n=3)〕. However, the NK cell number in the bone marrow (BM) and lymphonodes (LN) of the mice with S1PR5 defect increased very significantly 〔BM: 0.97±0.20 % vs 2.6±0.35% (P<0.01, n=3); LN: 0.35±0.16% vs 1.7±0.15% (P<0.01, n=3)〕. The percentages of CD3(+) lymphocyte in peripheral blood, spleen and lymph node were not statistically significantly different between these 2 types of mice 〔PB: 17.3±7.9% vs 17.0±4.6% (P>0.05, n=3); SP: 33.0±6.0% vs 27.4±1.8% (P>0.05, n=3); LN: 42.3±10.7% vs 51.2±2.7% (P>0.05, n=3)〕.
CONCLUSIONS1PR5 defect can significantly influence the NK cell distribution.
Animals ; Bone Marrow ; Cell Count ; Flow Cytometry ; Lymphocytes ; Lysophospholipids ; Mice ; Receptors, Lysosphingolipid ; Sphingosine ; analogs & derivatives
6.Sphingosine-1-phosphate receptors respond differently to early myocardial ischemia and ischemia-reperfusion in vivo.
Geng-Qian ZHANG ; Zheng LIANG ; Xiao-Jia ZHANG
Acta Physiologica Sinica 2014;66(2):169-174
Sphingosine-1-phosphate (S1P) has been demonstrated to be a mediator and marker of heart diseases. We hypothesized that the expression of S1P receptors is involved in the S1P-mediated cardioprotection in vivo and may serve as a biomarker of ischemic heart disease. In vivo models of myocardial ischemia (MI) and ischemia-reperfusion (IR) were established by ligation of the left anterior descending artery (LAD) of rat heart, the mRNA expressions of S1PR1-3 were detected using real time PCR at different time intervals after ischemia (LAD for 15 min, 30 min, and 1 h) and IR. The results showed that mRNA expression of S1PR3, but not S1PR1 and S1PR2, increased greatly after IR. No statistical difference was found in any of the three S1P receptors after MI within 1 h. Regarding the studies of lipid concentration changes in myocardiopathy, we conclude that S1P receptors are not early response biomarkers for MI. There are different mechanisms when S1P plays a protection role in heart during MI and IR. The cooperation of lipid content and S1P receptor expression appears to form a regulation network during MI and IR.
Animals
;
Lysophospholipids
;
physiology
;
Myocardial Reperfusion Injury
;
physiopathology
;
Rats
;
Receptors, Lysosphingolipid
;
physiology
;
Sphingosine
;
analogs & derivatives
;
physiology
7.Pro-Inflammatory Role of S1P₃ in Macrophages
Biomolecules & Therapeutics 2019;27(4):373-380
Sphingosine kinase 1 and its product, sphingosine 1-phosphate (S1P), as well as their receptors, have been implicated in inflammatory responses. The functions of receptors S1P₁ and S1P₂ on cell motility have been investigated. However, the function of S1P₃ has been poorly investigated. In this study, the roles of S1P₃ on inflammatory response were investigated in primary perito-neal macrophages. S1P₃ receptor was induced along with sphingosine kinase 1 by stimulation of lipopolysaccharide (LPS). LPS treatment induced inflammatory genes, such iNOS, COX-2, IL-1β, IL-6 and TNF-α. TY52156, an antagonist of S1P₃ suppressed the induction of inflammatory genes in a concentration dependent manner. Suppression of iNOS and COX-2 induction was further confirmed by western blotting and NO measurement. Suppression of IL-1β induction was also confirmed by western blotting and ELISA. Caspase 1, which is responsible for IL-1β production, was similarly induced by LPS and suppressed by TY52156. Therefore, we have shown S1P₃ induction in the inflammatory conditions and its pro-inflammatory roles. Targeting S1P₃ might be a strategy for regulating inflammatory diseases.
Blotting, Western
;
Caspase 1
;
Cell Movement
;
Enzyme-Linked Immunosorbent Assay
;
Inflammation
;
Interleukin-6
;
Macrophages
;
Phosphotransferases
;
Sphingosine
8.S1P₁ Regulates M1/M2 Polarization toward Brain Injury after Transient Focal Cerebral Ischemia
Bhakta Prasad GAIRE ; Young Joo BAE ; Ji Woong CHOI
Biomolecules & Therapeutics 2019;27(6):522-529
M1/M2 polarization of immune cells including microglia has been well characterized. It mediates detrimental or beneficial roles in neuroinflammatory disorders including cerebral ischemia. We have previously found that sphingosine 1-phospate receptor subtype 1 (S1P₁) in post-ischemic brain following transient middle cerebral artery occlusion (tMCAO) can trigger microglial activation, leading to brain damage. Although the link between S1P₁ and microglial activation as a pathogenesis in cerebral ischemia had been clearly demonstrated, whether the pathogenic role of S1P₁ is associated with its regulation of M1/M2 polarization remains unclear. Thus, this study aimed to determine whether S1P₁ was associated with regulation of M1/M2 polarization in post-ischemic brain. Suppressing S1P₁ activity with its functional antagonist, AUY954 (5 mg/kg, p.o.), attenuated mRNA upregulation of M1 polarization markers in post-ischemic brain at 1 day and 3 days after tMCAO challenge. Similarly, suppressing S1P₁ activity with AUY954 administration inhibited M1-polarizatioin-relevant NF-κB activation in post-ischemic brain. Particularly, NF-κB activation was observed in activated microglia of post-ischemic brain and markedly attenuated by AUY954, indicating that M1 polarization through S1P₁ in post-ischemic brain mainly occurred in activated microglia. Suppressing S1P₁ activity with AUY954 also increased mRNA expression levels of M2 polarization markers in post-ischemic brain, further indicating that S1P₁ could also influence M2 polarization in post-ischemic brain. Finally, suppressing S1P₁ activity decreased phosphorylation of M1-relevant ERK1/2, p38, and JNK MAPKs, but increased phosphorylation of M2-relevant Akt, all of which were downstream pathways following S1P₁ activation. Overall, these results revealed S1P₁-regulated M1/M2 polarization toward brain damage as a pathogenesis of cerebral ischemia.
Brain Injuries
;
Brain Ischemia
;
Brain
;
Infarction, Middle Cerebral Artery
;
Microglia
;
Phosphorylation
;
RNA, Messenger
;
Sphingosine
;
Up-Regulation
9.A Therapeutic Strategy for Alzheimer's Disease Focused on Immune-inflammatory Modulation
Seung Hyun KIM ; Min Young NOH ; Hee Jin KIM ; Ki Wook OH ; Jinseok PARK ; Sanggon LEE ; Yeonsil MOON ; Young Eun KIM ; Jae Sung BAE ; Hee Kyung JIN ;
Dementia and Neurocognitive Disorders 2019;18(2):33-46
Alzheimer's disease (AD), the most common form of dementia, has emerged as a major global public health challenge. However, the complexity of AD in its biological, genetic, and clinical aspects has hindered the development of effective therapeutic agents. Research plans that integrate new drug discoveries are urgently needed, including those based on novel and reliable biomarkers that reflect not only clinical phenotype, but also genetic and neuroimaging information. Therapeutic strategies such as stratification (i.e., subgrouping of patients having similar clinical characteristics or genetic background) and personalized medicine could be set as new directions for developing effective drugs for AD. In this review, we describe a therapeutic strategy that is based on immune-inflammation modulation for a subgroup of AD and related dementias, arguing that the use of stratification and personalized medicine is a promising way to achieve targeted medicine. The Korean AD Research Platform Initiative based on Immune-Inflammatory biomarkers (K-ARPI) has recently launched a strategy to develop novel biomarkers to identify a subpopulation of patients with AD and to develop new drug candidates for delaying the progression of AD by modulating toxic immune inflammatory response. Sphingosine kinase 1 (SphK1) and its metabolites, triggering receptor expressed on myeloid cells-2 (TREM2) related signals, and actin motility related proteins including Nck-associated protein 1 (Nap1) were selected as promising targets to modulate neuroinflammation. Their roles in stratification and personalized medicine will be discussed.
Actins
;
Alzheimer Disease
;
Biomarkers
;
Dementia
;
Humans
;
Inflammation
;
Neuroimaging
;
Phenotype
;
Phosphotransferases
;
Precision Medicine
;
Public Health
;
Sphingosine