1.Pseudogene Lamr1-ps1 Aggravates Early Spatial Learning Memory Deficits in Alzheimer's Disease Model Mice.
Zhuoze WU ; Xiaojie LIU ; Yuntai WANG ; Zimeng ZENG ; Wei CHEN ; Hao LI
Neuroscience Bulletin 2025;41(4):600-614
Alzheimer's disease (AD), a neurodegenerative disorder with complex etiologies, manifests through a cascade of pathological changes before clinical symptoms become apparent. Among these early changes, alterations in the expression of non-coding RNAs (ncRNAs) have emerged as pivotal events. In this study, we focused on the aberrant expression of ncRNAs and revealed that Lamr1-ps1, a pseudogene of the laminin receptor, significantly exacerbates early spatial learning and memory deficits in APP/PS1 mice. Through a combination of bioinformatics prediction and experimental validation, we identified the miR-29c/Bace1 pathway as a potential regulatory mechanism by which Lamr1-ps1 influences AD pathology. Importantly, augmenting the miR-29c-3p levels in mice ameliorated memory deficits, underscoring the therapeutic potential of targeting miR-29c-3p in early AD intervention. This study not only provides new insights into the role of pseudogenes in AD but also consolidates a foundational basis for considering miR-29c as a viable therapeutic target, offering a novel avenue for AD research and treatment strategies.
Animals
;
Alzheimer Disease/pathology*
;
Pseudogenes/genetics*
;
Mice
;
Memory Disorders/metabolism*
;
MicroRNAs/genetics*
;
Disease Models, Animal
;
Spatial Learning/physiology*
;
Mice, Transgenic
;
Presenilin-1/genetics*
;
Male
;
Amyloid Precursor Protein Secretases/metabolism*
;
Mice, Inbred C57BL
;
Aspartic Acid Endopeptidases/metabolism*
2.Effects of acute fear stress on spatial memory and neuronal plasticity in the medial prefrontal cortex in mice.
Dong-Bo LIU ; Yan SHI ; Chuan-Hao CHEN ; Heng TAO ; Xing-Hao LU ; Jin LU
Acta Physiologica Sinica 2022;74(5):705-714
The purpose of this study was to investigate the effects of acute fear stress on the spatial memory and neuronal plasticity of medial prefrontal cortex (mPFC) neurons in mice, and to elucidate the mechanisms underlying mPFC plasticity and post-stress memory regulation. Male C57BL/6 mice (6 weeks old) were randomly divided into control group and stress group. Foot shock stress was applied to establish an acute fear stress model. Changes in spatial memory were examined by the Morris water maze test, and the dynamic changes in the spike encoding of pyramidal neurons and GABAergic neurons in the prelimbic cortex (PrL) and infralimbic cortex (IL) of mPFC were detected by whole-cell recording. The results showed that acute fear stress significantly enhanced the percentage of freezing and the number of freezing, reduced the average speed, decreased the escape latency during acquisition phase, extended the probing time in the first quadrant and shortened the probing time in the third quadrant during probe trial, increased inter-spike interval, energy barrier and absolute refractory period of GABAergic neurons in the PrL and pyramidal neurons in the IL, while decreased inter-spike interval, energy barrier and absolute refractory period of pyramidal neurons in the PrL and GABAergic neurons in the IL. These results suggest that acute fear stress can enhance the spatial memory of mice, elevate the excitability and function of the PrL, while deteriorate the excitability and function of the IL, and the underlying mechanism may involve the role of mPFC microcircuitry plasticity in spatial memory after stress.
Animals
;
Male
;
Mice
;
Fear
;
Mice, Inbred C57BL
;
Neuronal Plasticity
;
Prefrontal Cortex
;
Spatial Memory
3.Chronic stress increases dopamine levels in hippocampal dentate gyrus and impairs spatial learning and memory in rats.
Ke ZHAO ; Peng REN ; Ming-Yue LI ; Qing-Hua JIN ; Bin XIAO
Acta Physiologica Sinica 2020;72(6):777-784
The objective of this study was to elucidate the effect of chronic stress (CS) on dopamine (DA) level and synaptic efficiency in the hippocampal dentate gyrus (DG) during spatial learning and memory. Sprague Dawley (SD) male rats were randomly divided into control group and CS group (n = 10). CS group was treated with chronic mild unpredictable stress, and control group did not receive any treatments. The levels of epinephrine and corticosterone (CORT) in serum were measured by using enzyme-linked immunosorbent assay (ELISA); the spatial learning and memory abilities of rats were measured by Morris water maze (MWM) test. Meanwhile, the amplitude of field excitatory postsynaptic potential (fEPSP) and concentration of DA in the DG region were determined by in vivo electrophysiology, microdialysis and HPLC techniques during MWM test in rats. After that, the DA D1 receptor (D1R) and its key downstream members in DG were examined by immunohistochemistry or Western blot assay. The results showed that the levels of epinephrine and CORT in the serum of the rats in CS group were significantly increased compared with those in the control group (P < 0.05). In CS group rats, the escape latency was significantly prolonged and the number of platform crossing was markedly decreased during MWM test, compared with those in control group (P < 0.05). Furthermore, the amplitude of fEPSP in the DG was not changed during MWM test in CS rats, while it was significantly increased on the 3rd day of MWM test in control group (P < 0.05). Compared with baseline or control group, CS group showed significantly increased DA level from the 1st to 3rd days of MWM test in the DG (P < 0.05). In addition, the protein expression of D1R was markedly up-regulated in the DG in CS group, while the protein expression levels of p-PKA, p-CREB and BDNF were significantly reduced, compared with those in control group. These results suggest that CS may impair spatial learning and memory abilities in rats through the enhancement of the DA levels in the hippocampal DG.
Animals
;
Dentate Gyrus
;
Dopamine
;
Hippocampus
;
Male
;
Maze Learning
;
Rats
;
Rats, Sprague-Dawley
;
Spatial Learning
;
Spatial Memory
4.Progress in the encoding characteristics and mechanisms of hippocampal neural assemble sequences in spatial memory.
Yi-Yuan ZHANG ; Nan ZHU ; Jia-Jia YANG ; Chen-Guang ZHENG
Acta Physiologica Sinica 2020;72(6):793-803
The formation, consolidation and retrieval of spatial memory depend on sequential firing patterns of place cells assembling in the hippocampus. Theta sequences of place cells during behavior play a role in acquisition of spatial memory, trajectory prediction and decision making. In awake rest and slow wave sleep, place cell sequences occur during the sharp wave-ripples (SWRs), called "replay", which is crucial for memory consolidation and retrieval. In this review, we summarize the functional significances of theta sequences and SWRs replay sequences and the mechanism of these sequences. We also discuss the relationship between theta and replay sequences with the formation of spatial memory. We propose the research direction in this field in future and aim to provide new ideas for related researches.
Hippocampus
;
Sleep
;
Spatial Memory
;
Wakefulness
5.β-Sitosterol treatment attenuates cognitive deficits and prevents amyloid plaque deposition in amyloid protein precursor/presenilin 1 mice
Jian Ya YE ; Li LI ; Qing Mao HAO ; Yong QIN ; Chang Sheng MA
The Korean Journal of Physiology and Pharmacology 2020;24(1):39-46
Alzheimer's disease (AD) is the most common neurodegenerative disorder causing dementia worldwide, and is mainly characterized by aggregated β-amyloid (Aβ). Increasing evidence has shown that plant extracts have the potential to delay AD development. The plant sterol β-Sitosterol has a potential role in inhibiting the production of platelet Aβ, suggesting that it may be useful for AD prevention. In the present study, we aimed to investigate the effect and mechanism of β-Sitosterol on deficits in learning and memory in amyloid protein precursor/presenilin 1 (APP/PS1) double transgenic mice. APP/PS1 mice were treated with β-Sitosterol for four weeks, from the age of seven months. Brain Aβ metabolism was evaluated using ELISA and Western blotting. We found that β-Sitosterol treatment can improve spatial learning and recognition memory ability, and reduce plaque load in APP/PS1 mice. β-Sitosterol treatment helped reverse dendritic spine loss in APP/PS1 mice and reversed the decreased hippocampal neuron miniature excitatory postsynaptic current frequency. Our research helps to explain and support the neuroprotective effect of β-Sitosterol, which may offer a novel pharmaceutical agent for the treatment of AD. Taken together, these findings suggest that β-Sitosterol ameliorates memory and learning impairment in APP/PS1 mice and possibly decreases Aβ deposition.
Alzheimer Disease
;
Amyloid
;
Animals
;
Blood Platelets
;
Blotting, Western
;
Brain
;
Cognition Disorders
;
Dementia
;
Dendritic Spines
;
Enzyme-Linked Immunosorbent Assay
;
Excitatory Postsynaptic Potentials
;
Learning
;
Memory
;
Metabolism
;
Mice
;
Mice, Transgenic
;
Neurodegenerative Diseases
;
Neurons
;
Neuroprotective Agents
;
Plant Extracts
;
Plants
;
Plaque, Amyloid
;
Spatial Learning
6.Long-term exposure to high altitude affects spatial working memory in migrants-evidence from time and frequency domain analysis.
Hai-Lin MA ; Ting MO ; Tong-Ao ZENG ; Yan WANG
Acta Physiologica Sinica 2020;72(2):181-189
Long-term exposure to high altitude affects spatial working memory. Previous studies have focused on the analysis of electroencephalogram (EEG) components in time domain rather than in frequency domain. To explore the influence of long-term high altitude exposure on time dynamic characteristics and neural oscillation process of the spatial working memory, n-back task combined with the technology of event related potential recording was performed on 20 young migrants who grew at low altitude before the age of 18 and moved to high altitude more than three years ago, and 21 young people who had never been to the high altitude. EEG data were recorded, and the time domain and frequency domain analyses were performed. The results showed that the response time was longer and the accuracy rate was lower under the 2-back condition in the high altitude group compared with those in low altitude group. The late positive potential (LPP) amplitude was more negative, P2 amplitude was more positive in the 2-back condition, and the power value of early delta frequency band (1-4 Hz, 160-300 ms) was larger, while the power values of late delta frequency band (1-4 Hz, 450-650 ms) and theta frequency band (4-8 Hz, 450-650 ms) were smaller in the high altitude group compared with those in low altitude group. The results suggested that long-term exposure to high altitude affected the spatial working memory ability of the migrants, which was reflected in the lack of attention resources in the later matching stage, decreased response inhibition ability and information maintenance ability, and thus resulted in impaired spatial working memory.
Altitude
;
Brain
;
physiopathology
;
Electroencephalography
;
Humans
;
Memory, Short-Term
;
Reaction Time
;
Spatial Memory
;
Transients and Migrants
7.Behavioral Abnormality along with NMDAR-related CREB Suppression in Rat Hippocampus after Shortwave Exposure.
Chao YU ; Yan Xin BAI ; Xin Ping XU ; Ya Bing GAO ; Yan Hui HAO ; Hui WANG ; Sheng Zhi TAN ; Wen Chao LI ; Jing ZHANG ; Bin Wei YAO ; Ji DONG ; Li ZHAO ; Rui Yun PENG
Biomedical and Environmental Sciences 2019;32(3):189-198
OBJECTIVE:
To estimate the detrimental effects of shortwave exposure on rat hippocampal structure and function and explore the underlying mechanisms.
METHODS:
One hundred Wistar rats were randomly divided into four groups (25 rats per group) and exposed to 27 MHz continuous shortwave at a power density of 5, 10, or 30 mW/cm2 for 6 min once only or underwent sham exposure for the control. The spatial learning and memory, electroencephalogram (EEG), hippocampal structure and Nissl bodies were analysed. Furthermore, the expressions of N-methyl-D-aspartate receptor (NMDAR) subunits (NR1, NR2A, and NR2B), cAMP responsive element-binding protein (CREB) and phosphorylated CREB (p-CREB) in hippocampal tissue were analysed on 1, 7, and 14 days after exposure.
RESULTS:
The rats in the 10 and 30 mW/cm2 groups had poor learning and memory, disrupted EEG oscillations, and injured hippocampal structures, including hippocampal neurons degeneration, mitochondria cavitation and blood capillaries swelling. The Nissl body content was also reduced in the exposure groups. Moreover, the hippocampal tissue in the 30 mW/cm2 group had increased expressions of NR2A and NR2B and decreased levels of CREB and p-CREB.
CONCLUSION
Shortwave exposure (27 MHz, with an average power density of 10 and 30 mW/cm2) impaired rats' spatial learning and memory and caused a series of dose-dependent pathophysiological changes. Moreover, NMDAR-related CREB pathway suppression might be involved in shortwave-induced structural and functional impairments in the rat hippocampus.
Animals
;
Cyclic AMP Response Element-Binding Protein
;
genetics
;
metabolism
;
Dose-Response Relationship, Radiation
;
Electroencephalography
;
radiation effects
;
Hippocampus
;
radiation effects
;
Male
;
Memory
;
radiation effects
;
Nissl Bodies
;
physiology
;
radiation effects
;
Radio Waves
;
adverse effects
;
Random Allocation
;
Rats
;
Rats, Wistar
;
Receptors, N-Methyl-D-Aspartate
;
genetics
;
metabolism
;
Spatial Learning
;
radiation effects
8.Exploratory, cognitive, and depressive-like behaviors in adult and pediatric mice exposed to controlled cortical impact
Suk Woo LEE ; Mun Sun JANG ; Seong Hae JEONG ; Hoon KIM
Clinical and Experimental Emergency Medicine 2019;6(2):125-137
OBJECTIVE: Sequelae of behavioral impairments associated with human traumatic brain injury (TBI) include neurobehavioral problems. We compared exploratory, cognitive, and depressive-like behaviors in pediatric and adult male mice exposed to controlled cortical impact (CCI).METHODS: Pediatric (21 to 25 days old) and adult (8 to 12 weeks old) male C57Bl/6 mice underwent CCI at a 2-mm depth of deflection. Hematoxylin and eosin staining was performed 3 to 7 days after recovery from CCI, and injury volume was analyzed using ImageJ. Neurobehavioral characterization after CCI was performed using the Barnes maze test (BMT), passive avoidance test, open-field test, light/dark test, tail suspension test, and rotarod test. Acutely and subacutely (3 and 7 days after CCI, respectively), CCI mice showed graded injury compared to sham mice for all analyzed deflection depths.RESULTS: Time-dependent differences in injury volume were noted between 3 and 7 days following 2-mm TBI in adult mice. In the BMT, 2-mm TBI adults showed spatial memory deficits compared to sham adults (P < 0.05). However, no difference in spatial learning and memory was found between sham and 2-mm CCI groups among pediatric mice. The open-field test, light/dark test, and tail suspension test did not reveal differences in anxiety-like behaviors in both age groups.CONCLUSION: Our findings revealed a graded injury response in both age groups. The BMT was an efficient cognitive test for assessing spatial/non-spatial learning following CCI in adult mice; however, spatial learning impairments in pediatric mice could not be assessed.
Adult
;
Animals
;
Brain Injuries
;
Eosine Yellowish-(YS)
;
Hematoxylin
;
Hindlimb Suspension
;
Humans
;
Learning
;
Male
;
Memory
;
Mice
;
Rotarod Performance Test
;
Spatial Learning
;
Spatial Memory
9.The Glutamatergic Postrhinal Cortex-Ventrolateral Orbitofrontal Cortex Pathway Regulates Spatial Memory Retrieval.
Xinyang QI ; Zhanhong Jeff DU ; Lin ZHU ; Xuemei LIU ; Hua XU ; Zheng ZHOU ; Cheng ZHONG ; Shijiang LI ; Liping WANG ; Zhijun ZHANG
Neuroscience Bulletin 2019;35(3):447-460
A deficit in spatial memory has been taken as an early predictor of Alzheimer's disease (AD) or mild cognitive impairment (MCI). The uncinate fasciculus (UF) is a long-range white-matter tract that connects the anterior temporal lobe with the orbitofrontal cortex (OFC) in primates. Previous studies have shown that the UF impairment associated with spatial memory deficits may be an important pathological change in aging and AD, but its exact role in spatial memory is not well understood. The pathway arising from the postrhinal cortex (POR) and projecting to the ventrolateral orbitofrontal cortex (vlOFC) performs most of the functions of the UF in rodents. Although the literature suggests an association between spatial memory and the regions connected by the POR-vlOFC pathway, the function of the pathway in spatial memory is relatively unknown. To further illuminate the function of the UF in spatial memory, we dissected the POR-vlOFC pathway in mice. We determined that the POR-vlOFC pathway is a glutamatergic structure, and that glutamatergic neurons in the POR regulate spatial memory retrieval. We also demonstrated that the POR-vlOFC pathway specifically transmits spatial information to participate in memory retrieval. These findings provide a deeper understanding of UF function and dysfunction related to disorders of memory, as in MCI and AD.
Animals
;
Glutamic Acid
;
physiology
;
Male
;
Mental Recall
;
physiology
;
Mice, Inbred C57BL
;
Neural Pathways
;
cytology
;
physiology
;
Neuroanatomical Tract-Tracing Techniques
;
Neurons
;
physiology
;
Prefrontal Cortex
;
cytology
;
physiology
;
Spatial Memory
;
physiology
;
Temporal Lobe
;
cytology
;
physiology
10.NMDA Receptor Antagonist MK801 Protects Against 1-Bromopropane-Induced Cognitive Dysfunction.
Lin XU ; Xiaofei QIU ; Shuo WANG ; Qingshan WANG ; Xiu-Lan ZHAO
Neuroscience Bulletin 2019;35(2):347-361
Occupational exposure to 1-bromopropane (1-BP) induces learning and memory deficits. However, no therapeutic strategies are currently available. Accumulating evidence has suggested that N-methyl-D-aspartate receptors (NMDARs) and neuroinflammation are involved in the cognitive impairments in neurodegenerative diseases. In this study we aimed to investigate whether the noncompetitive NMDAR antagonist MK801 protects against 1-BP-induced cognitive dysfunction. Male Wistar rats were administered with MK801 (0.1 mg/kg) prior to 1-BP intoxication (800 mg/kg). Their cognitive performance was evaluated by the Morris water maze test. The brains of rats were dissected for biochemical, neuropathological, and immunological analyses. We found that the spatial learning and memory were significantly impaired in the 1-BP group, and this was associated with neurodegeneration in both the hippocampus (especially CA1 and CA3) and cortex. Besides, the protein levels of phosphorylated NMDARs were increased after 1-BP exposure. MK801 ameliorated the 1-BP-induced cognitive impairments and degeneration of neurons in the hippocampus and cortex. Mechanistically, MK801 abrogated the 1-BP-induced disruption of excitatory and inhibitory amino-acid balance and NMDAR abnormalities. Subsequently, MK801 inhibited the microglial activation and release of pro-inflammatory cytokines in 1-BP-treated rats. Our findings, for the first time, revealed that MK801 protected against 1-BP-induced cognitive dysfunction by ameliorating NMDAR function and blocking microglial activation, which might provide a potential target for the treatment of 1-BP poisoning.
Animals
;
Brain
;
drug effects
;
metabolism
;
pathology
;
Cognitive Dysfunction
;
drug therapy
;
metabolism
;
pathology
;
Disease Models, Animal
;
Dizocilpine Maleate
;
pharmacology
;
Excitatory Amino Acid Antagonists
;
pharmacology
;
Hydrocarbons, Brominated
;
Inflammasomes
;
drug effects
;
metabolism
;
Male
;
Maze Learning
;
drug effects
;
physiology
;
Microglia
;
drug effects
;
metabolism
;
pathology
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
metabolism
;
Neurons
;
drug effects
;
metabolism
;
pathology
;
Nootropic Agents
;
pharmacology
;
Random Allocation
;
Rats, Wistar
;
Receptors, N-Methyl-D-Aspartate
;
antagonists & inhibitors
;
metabolism
;
Spatial Memory
;
drug effects
;
physiology
;
Specific Pathogen-Free Organisms

Result Analysis
Print
Save
E-mail