1.Effects of Danggui-Shaoyao-San on the Influence of Spatial Learning and Memory Induced by Experimental Tooth Movement.
Hong-Shi LI ; Jie KE ; Gui-Zhi ZHAO ; Li-An WU ; Jun-Ping KOU ; Hong-Chen LIU
Chinese Medical Journal 2015;128(14):1948-1955
BACKGROUNDThe pain caused by orthodontic treatment has been considered as tough problems in orthodontic practice. There is substantial literature on pain which has exactly effected on learning and memory; orthodontic tooth movement affected the emotional status has been showed positive outcomes. Danggui-Shaoyao-San (DSS) is a Traditional Chinese Medicine prescription that has been used for pain treatment and analgesic effect for orthodontic pain via inhibiting the activations of neuron and glia. We raised the hypothesis that DSS could restore the impaired abilities of spatial learning and memory via regulating neuron or glia expression in the hippocampus.
METHODSA total of 36 rats were randomly divided into three groups: (1) Sham group (n = 12), rats underwent all the operation procedure except for the placement of orthodontic forces and received saline treatment; (2) experimental tooth movement (ETM) group (n = 12), rats received saline treatment and ETM; (3) DSS + ETM (DETM) group (n = 12), rats received DSS treatment and ETM. All DETM group animals were administered with DSS at a dose of 150 mg/kg. Morris water maze test was evaluated; immunofluorescent histochemistry was used to identify astrocytes activation, and immunofluorescent dendritic spine analysis was used to identify the dendritic spines morphological characteristics expression levels in hippocampus.
RESULTSMaze training sessions during the 5 successive days revealed that ETM significantly deficits in progressive learning in rats, DSS that was given from day 5 prior to ETM enhanced progressive learning. The ETM group rats took longer to cross target quadrant during the probe trial and got less times to cross-platform than DETM group. The spine density in hippocampus in ETM group was significantly decreased compared to the sham group. In addition, thin and mature spine density were decreased too. However, the DSS administration could reverse the dendritic shrinkage and increase the spine density compared to the ETM group. Astrocytes activation showed the opposite trend in hippocampus dentate gyrus (DG).
CONCLUSIONSTreatment with DSS could restore the impaired abilities on ETM-induced decrease of learning and memory behavior. The decreased spines density in the hippocampus and astrocytes activation in DG of hippocampus in the ETM group rats may be related with the decline of the ability of learning and memory. The ability to change the synaptic plasticity in hippocampus after DSS administration may be correlated with the alleviation of impairment of learn and memory after ETM treatment.
Animals ; Drugs, Chinese Herbal ; pharmacology ; Hippocampus ; drug effects ; physiology ; Male ; Memory ; drug effects ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Spatial Learning ; drug effects ; Tooth Movement Techniques ; adverse effects
2.Effect of leptin on long-term spatial memory of rats with white matter damage in developing brain.
Chinese Journal of Contemporary Pediatrics 2017;19(12):1267-1271
OBJECTIVETo investigate the neuroprotective effect of leptin by observing its effect on spatial memory of rats with white matter damage in developing brain.
METHODSA total of 80 neonatal rats were randomly divided into 3 groups: sham-operation (n=27), model (n=27) and leptin intervention (n=27). The rats in the model and leptin intervention groups were used to prepare a model of white matter damage in developing brain, and the rats in the leptin intervention group were given leptin (100 μg/kg) diluted with normal saline immediately after modelling for 4 consecutive days. The survival rate of the rats was observed and the change in body weight was monitored. When the rats reached the age of 21 days, the Morris water maze test was used to evaluate spatial memory.
RESULTSThere was no significant difference in the survival rate of rats between the three groups (P>0.05). Within 10 days after birth, the leptin intervention group had similar body weight as the sham-operation group and significantly lower body weight than the model group (P<0.05); more than 10 days after birth, the leptin intervention group had rapid growth with higher body weight than the model and sham-operation groups (P>0.05). The results of place navigation showed that from the second day of experiment, there was a significant difference in the latency period between the three groups (P<0.05); from the fourth day of experiment, the leptin intervention group had a similar latency period as the sham-operation and a significantly shorter latency period than the model group (P<0.05). The results of space search experiment showed that compared with the sham-operation group, the model group had a significant reduction in the number of platform crossings and a significantly longer latency period (P<0.05); compared with the model group, the leptin intervention group had a significantly increased number of platform crossings and a significantly shortened latency period (P<0.05), while there was no significant difference between the leptin intervention and sham-operation groups.
CONCLUSIONSLeptin can alleviate spatial memory impairment of rats with white matter damage in developing brain. It thus exerts a neuroprotective effect, and is worthy of further research.
Animals ; Female ; Leptin ; pharmacology ; Maze Learning ; drug effects ; Neuroprotective Agents ; pharmacology ; Pregnancy ; Rats ; Rats, Sprague-Dawley ; Reaction Time ; Spatial Memory ; drug effects ; White Matter ; pathology
3.Effect of nano-SiO2 exposure on spatial learning and memory and LTP of hippocampal dentate gyrus in rats.
Huan-rui SUN ; Na ZHANG ; Xue-wei CHEN ; Gai-hong AN ; Chuan-xiang XU ; Qiang MA
Chinese Journal of Applied Physiology 2016;32(1):78-81
OBJECTIVETo study the effect of nano-SiO2 on spatial learning and memory.
METHODSTwenty-four male rats were randomly divided into 3 groups: control group (C group), low dose group (L group) and high dose group (H group). The rats were intragastrically administrated with nanometer particles at 25 and 100 mg/kg body weight every day for 4 weeks. After exposure, the ability of learning and memory of rats was tested by Morris water maze, and electrophysiological brain stereotactic method was used to test long-tear potentiation (LTP) in dentate gyrus (DG) of the rats.
RESULTSThe increase rate of body weight in H group was reduced significantly compared with C group ( P < 0.05). In the space exploration experiment of Morris water maze test, the escape latency of H group was longer than that of C group (P < 0.05). The rats of H group spent less time in finding the target quadrant (P < 0.05) . The rate of LP induction of H group was significantly lower than that of C group (P < 0.05). After high fre quency stimulation (HFS), The changes of amplitude of population spike (PS) of L group and H group were lower than those of C group significantly (P < 0.05, P < 0.01).
CONCLUSIONNano-SiO₂may result in impairment of spatial learning and memory ability by reducing the rate of LTP induction and the increase of PS in hippocampus.
Animals ; Dentate Gyrus ; drug effects ; Long-Term Potentiation ; drug effects ; Male ; Maze Learning ; drug effects ; Memory ; drug effects ; Nanoparticles ; adverse effects ; Rats ; Silicon Dioxide ; adverse effects ; Spatial Learning ; drug effects
4.Effects of ketamine and alcohol on learning and memory impairment in mice.
Mei-Yu YANG ; Fei DING ; Xiao-Gang JIANG ; Xie-Xing WU ; Zhen-Lun GU ; Ci-Yi GUO ; Shi-Zhong BIAN
Journal of Forensic Medicine 2012;28(2):115-119
OBJECTIVE:
To study the effects of ketamine and alcohol on learning and memory in mice and its possible mechanism.
METHODS:
Forty mice were divided into 4 groups: normal control group, ketamine group, alcohol group, and alcohol plus ketamine group. Ketamine and alcohol were given by intraperitoneal injection and intragastric administration, respectively, 1 time per day, for 14 days. The ability of learning and memory in mice was tested by the method of step-down and Morris water maze. Acetylcholine (ACh) and 5-hydroxy tryptamine(5-HT) in mice brain tissue were analyzed for the possible mechanism.
RESULTS:
(1) Step-down: The treatment groups lessened the latency and added wrong times (P < 0.05). The number of errors in the combined treatment group significantly increased comparing with the single drug treatment group (P < 0.05). (2) Morris water-maze: The treatment groups prolonged the latency (P < 0.05), reduced the target quadrant activity time significantly (P < 0.05), and decreased the numbers of crossing the former platform significantly (P < 0.05). (3) Biochemical index determination: The concentrations of ACh and 5-HT in treatment groups decreased significantly (P < 0.05), showed a more decreasement comparing with the single drug treatment group.
CONCLUSION
Ketamine has a synergistic effect with alcohol on learning and memory impairment in mice, which may be related to the common inhibitive effect on the ACh and 5-HT.
Acetylcholine/metabolism*
;
Alcohols/pharmacology*
;
Animals
;
Brain/physiopathology*
;
Drug Synergism
;
Ketamine/pharmacology*
;
Male
;
Maze Learning/drug effects*
;
Memory/drug effects*
;
Memory Disorders/physiopathology*
;
Mice
;
Mice, Inbred ICR
;
Serotonin/metabolism*
;
Spatial Behavior/drug effects*
5.The α(2A)-adrenoceptor agonist guanfacine improves spatial learning but not fear conditioning in rats.
Xin-Chun JIN ; Chao-Lin MA ; Bao-Ming LI
Acta Physiologica Sinica 2007;59(6):739-744
It is known that stimulation of the α(2A)-adrenoceptors (α(2A)-ARs) by the selective α(2A)-AR agonist guanfacine produces an important and beneficial influence on prefrontal cortical (PFC) cognitive functions such as spatial working memory and selective attention. However, it is unclear whether stimulation of the α(2A)-ARs has a similar effect on fear conditioning that involves the amygdala and hippocampus. Here, we show that systemically administered guanfacine significantly enhances spatial learning of rats in the Lashley maze: compared with controls, the rats treated with guanfacine required significantly fewer trials and made significantly fewer errors to reach learning criterion. However, guanfacine produced no effect on acquisition of contextual and auditory fear memories. The present study suggests that beneficial effect of α(2A)-AR stimulation is task-dependent: guanfacine improves spatial learning but not fear conditioning.
Adrenergic alpha-2 Receptor Agonists
;
pharmacology
;
Animals
;
Behavior, Animal
;
drug effects
;
Conditioning (Psychology)
;
drug effects
;
Fear
;
drug effects
;
Guanfacine
;
pharmacology
;
Maze Learning
;
drug effects
;
Memory
;
drug effects
;
Rats
;
Spatial Behavior
;
drug effects
6.Gly14-humanin protects against Aβ₃₁₋₃₅-induced impairment of spatial learning and memory in rats.
Li YUAN ; Wei-Na HAN ; Shao-Feng LI ; Xiao-Jie LIU ; Mei-Na WU ; Jin-Shun QI
Acta Physiologica Sinica 2012;64(6):625-632
Amyloid β protein (Aβ) is closely involved in the pathogenesis of Alzheimer's disease (AD), and one of the main strategies for AD treatment is antagonizing the neurotoxicity of Aβ or even clearing the Aβ deposited in the brain. The present study was aimed to observe the effects of intrahippocampal injection of Aβ₃₁₋₃₅ on the spatial learning and memory of rats by using Morris water maze technique, and explore the neuroprotective effects and possible mechanism of [Gly14]-humanin (HNG) against Aβ-induced deficits in learning behavior. The results showed that bilateral intrahippocampal injection of 2.0 nmol Aβ₃₁₋₃₅ significantly increased the mean traveled distance of rats in searching for the hidden underwater platform and decreased the distance percentage in the target quadrant in probe test after withdrawal of platform, whereas pretreatment with HNG (0.2 nmol and 2.0 nmol) suppressed Aβ₃₁₋₃₅-induced increase in the traveled distance and decrease in swimming distance percentage. Application of Genistein (40 nmol), a specific tyrosine kinase inhibitor, almost completely blocked the antagonistic effects of HNG against Aβ₃₁₋₃₅. These results indicate that HNG can dose-dependently prevent against Aβ₃₁₋₃₅-induced impairment in spatial learning and memory of rats, and the neuroprotective effects of HNG might involve the activation of endogenous tyrosine kinase pathway, suggesting that up-regulation of the tyrosine kinase signaling by using HNG might be of great significance for the improvement of cognitive function in AD.
Alzheimer Disease
;
physiopathology
;
Amyloid beta-Peptides
;
adverse effects
;
antagonists & inhibitors
;
Animals
;
Brain
;
drug effects
;
Genistein
;
pharmacology
;
Memory
;
drug effects
;
Neuroprotective Agents
;
pharmacology
;
Peptide Fragments
;
adverse effects
;
antagonists & inhibitors
;
Peptides
;
pharmacology
;
Rats
;
Spatial Learning
;
drug effects
7.Relationship between corrected spatial memory in diabetic rats and protein kinase Cγ, caveolin-1 in the hippocampus and neuroprotective effect of catalpol.
Haicheng ZHOU ; Jing LIU ; Liyuan REN ; Wei LIU ; Qian XING ; Lili MEN ; Guirong SONG ; Jianling DU
Chinese Medical Journal 2014;127(5):916-923
BACKGROUNDThe mechanisms underlying diabetic encephalopathy are largely unknown, and no effective treatments are available. Catalpol has received much attention due to its numerous biological effects, especially in neuroprotective studies. The aim of this study was to investigate the effects of catalpol on cognitive functions in diabetic rats and the underlying mechanisms.
METHODSA rat model of diabetes was established by streptozotocin injection, followed by intraperitoneal infusion of catalpol after 10 weeks. Two weeks later, the Morris water maze was used to test the spatial learning performance. Nissl staining was performed to evaluate the morphological changes in the hippocampus. Expression of protein kinase Cγ (PKCγ) and caveolin-1 (Cav-1) in the hippocampus were assessed by reverse transcription PCR and Western blotting. Activities of anti-oxidative enzymes such as glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) and levels of malonaldehyde (MDA) were measured using commercial kits.
RESULTSSignificant hippocampal neuronal injury was observed in rats with streptozotocin-induced diabetes. Moreover, cognitive dysfunction was associated with markedly increased oxidative stress in the brain. Catalpol treatment significantly attenuated cognitive deficits, neuronal damage, and oxidative stress in the brain of diabetic rats. Biochemical analyses showed that catalpol reversed the down-regulation of PKCγ and Cav-1 expression in the diabetic rats.
CONCLUSIONSSpatial memory in diabetic rats is associated with the expression of PKCγ and Cav-1. Catalpol treatment markedly attenuated oxidative stress, reversed the alteration of PKCγ, Cav-1 and spatial memory deficits.
Animals ; Caveolin 1 ; metabolism ; Diabetes Mellitus, Experimental ; drug therapy ; metabolism ; physiopathology ; Hippocampus ; drug effects ; metabolism ; Iridoid Glucosides ; therapeutic use ; Male ; Neuroprotective Agents ; therapeutic use ; Oxidative Stress ; drug effects ; Protein Kinase C ; metabolism ; Rats ; Spatial Memory ; drug effects ; physiology
8.Valproic acid withdrawal ameliorates impairments of hippocampal-spatial working memory and neurogenesis.
Wanassanun PANNANGRONG ; Apiwat SIRICHOAT ; Trai WONGSIRI ; Peter WIGMORE ; Jariya Umka WELBAT
Journal of Zhejiang University. Science. B 2019;20(3):253-263
Valproic acid (VPA), an agent that is used to treat epileptic seizures, can cause spatial memory impairment in adults and children. This effect is thought to be due to the ability of VPA to inhibit neurogenesis in the hippocampus, which is required for learning. We have previously used an animal model to show that VPA significantly impairs hippocampal-spatial working memory and inhibits neuronal generation in the sub-granular zone of the dentate gyrus. As there are patient reports of improvements in memory after discontinuing VPA treatment, the present study investigated the recovery of both spatial memory and hippocampal neurogenesis at two time points after withdrawal of VPA. Male Wistar rats were given intraperitoneal injections of 0.9% normal saline or VPA (300 mg/kg) twice a day for 10 d. At 1, 30, or 45 d after the drug treatment, the novel object location (NOL) test was used to examine spatial memory; hippocampal cell division was counted using Ki67 immunohistochemistry, and levels of brain-derived neurotrophic factor (BDNF) and Notch1 were measured using western immunoblotting. Spatial working memory was impaired 1 and 30 d after the final administration, but was restored to control levels by 45 d. Cell proliferation had increased to control levels at 30 and 45 d. Both markers of neurogenesis (BDNF and Notch1 levels) had returned to control levels at 45 d. These results demonstrate that memory recovery occurs over a period of six weeks after discontinuing VPA treatment and is preceded by a return of hippocampal neurogenesis to control levels.
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Cell Proliferation
;
Cognition/drug effects*
;
Dentate Gyrus/drug effects*
;
Enzyme Inhibitors/pharmacology*
;
Hippocampus/metabolism*
;
Immunohistochemistry
;
Male
;
Memory Disorders/therapy*
;
Memory, Short-Term/drug effects*
;
Neurogenesis/drug effects*
;
Neurons/metabolism*
;
Rats
;
Rats, Wistar
;
Receptor, Notch1/metabolism*
;
Spatial Memory/drug effects*
;
Valproic Acid/pharmacology*
9.Effect of sodium nitrite on phosphorylation of cytoskeletal proteins and spatial learning and memory in rats.
Zhi-Hong HU ; Ling-Ling FAN ; Yong-Mei HU
Acta Physiologica Sinica 2015;67(5):479-486
The present study was aimed to explore the effect of sodium nitrite on cytoskeletal protein phosphorylation and spatial learning and memory in rats. Rats were served with drinking water containing sodium nitrite (100 mg/kg) for 60 days, then, the ability of spatial learning and memory of the rats was measured by Morris water maze. Phosphorylation level of tau and neurofilament, and the expression of protein phosphatase 2A (PP2A) catalytic subunit in the hippocampus were detected by immunohistochemistry and Western blot. In comparison with the rats served with normal tap water, the rats served with sodium nitrite water showed significantly longer latency to find the hidden platform in Morris water maze (P < 0.05), elevated phosphorylation level of tau and neurofilament, and decreased expression of PP2A catalytic subunit (P < 0.05). These results indicated that administration of sodium nitrite could impair the spatial learning and memory of the rats, and the hyperphosphorylation of cytoskeletal proteins and the down-regulation of PP2A might be underlying mechanisms for the impairment.
Animals
;
Cytoskeletal Proteins
;
metabolism
;
Down-Regulation
;
Hippocampus
;
metabolism
;
Maze Learning
;
Memory
;
drug effects
;
Neurofilament Proteins
;
metabolism
;
Phosphorylation
;
Protein Phosphatase 2
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Sodium Nitrite
;
pharmacology
;
Spatial Learning
;
drug effects
;
tau Proteins
;
metabolism
10.Effect of GEPT extracts on spatial learning ability of APPV717I transgenic mice at early stage of dementia and its possible mechanism.
Leiming ZHANG ; Jinzhou TIAN ; Junxiang YIN ; Jing SHI ; Pengwen WANG ; Rong WANG ; Quan HU ; Zhiwei ZHAO ; Zhijuan JI ; Ying REN
China Journal of Chinese Materia Medica 2009;34(4):428-432
OBJECTIVETo investigate the effect of GEPT extracts on spatial learning ability of the APPV717I transgenic mice at the early stage of dementia and its possible mechanism.
METHODThirty APPV717I transgenic mice were randomly divided into three GEPT groups by intragastric administration at doses of 0.075, 0.15, 0.3 g x kg(-1) x d(-1), and a donepezil group by intragastric administration of 0.92 mg x kg(-1) x d(-1), a APPV717I transgenic model group and a normal group by intragastric administration of distilled water. A four-month treatment regimen with GEPT extracts was administered to APPV717I transgenic mice. Results showed that Spatial memory ability was measured in Morris water maze. The total area covered by shank1 and integral optical density in CA1 subfield within the hippocampus were determined using immunohistochemical stains and Image-Pro plus analysis. The ultrastructure of synapses in the hippocampal CA1 region was observed by electronic microscope.
RESULTAfter a four-month of GEPT treatment regimen, the mean escape latency period were significantly shortened (P < 0.05), and the target quadrant search time were significantly increased (P < 0.05) compared to the APPV717I transgenic model mice. There was a significant higher level in the expression of shank1 detected in the hippocampal CA1 area of APPV717I transgenic mice associated with an increase in the number of synapses treated with GEPT than the levels in the APPV717I transgenic model mice alone. The total area of positive cells covered by shank1 and their integral optical density in the hippocampal CA1 area of the APPV717I transgenic mice treated with GEPT were significantly increased more than those of the APPV717I transgenic model mice.
CONCLUSIONGEPT extracts can obviously improve the spatial memory ability of APPV717I transgenic mice at the early stage of dementia through enhancing the number of synapses and the expression of shank1, and this might lead to development of novel treatment therapies for the memory loss associated with AD.
Animals ; Dementia ; prevention & control ; Disease Models, Animal ; Female ; Learning ; Male ; Memory ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mice, Transgenic ; Panax ; chemistry ; Plant Extracts ; therapeutic use ; Space Perception ; drug effects ; physiology ; Spatial Behavior ; drug effects ; physiology