1.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
2.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
3.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
4.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
5.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
6.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
7.Establishing Regional Aβ Cutoffs andExploring Subgroup Prevalence Across Cognitive Stages Using BeauBrain Amylo®
Seongbeom PARK ; Kyoungmin KIM ; Soyeon YOON ; Seongmi KIM ; Jehyun AHN ; Kyoung Yoon LIM ; Hyemin JANG ; Duk L. NA ; Hee Jin KIM ; Seung Hwan MOON ; Jun Pyo KIM ; Sang Won SEO ; Jaeho KIM ; Kichang KWAK
Dementia and Neurocognitive Disorders 2025;24(2):135-146
Background:
and Purpose: Amyloid-beta (Aβ) plaques are key in Alzheimer’s disease (AD), with Aβ positron emission tomography imaging enabling non-invasive quantification.To address regional Aβ deposition, we developed regional Centiloid scales (rdcCL) and commercialized them through the computed tomography (CT)-based BeauBrain Amylo platform, eliminating the need for three-dimensional T1 magnetic resonance imaging (MRI).
Objective:
We aimed to establish robust regional Aβ cutoffs using the commercialized BeauBrain Amylo platform and to explore the prevalence of subgroups defined by global, regional, and striatal Aβ cutoffs across cognitive stages.
Methods:
We included 2,428 individuals recruited from the Korea-Registries to Overcome Dementia and Accelerate Dementia Research project. We calculated regional Aβ cutoffs using Gaussian Mixture Modeling. Participants were classified into subgroups based on global, regional, and striatal Aβ positivity across cognitive stages (cognitively unimpaired [CU], mild cognitive impairment, and dementia of the Alzheimer’s type).
Results:
MRI-based and CT-based global Aβ cutoffs were highly comparable and consistent with previously reported Centiloid values. Regional cutoffs revealed both similarities and differences between MRI- and CT-based methods, reflecting modality-specific segmentation processes. Subgroups such as global(−)regional(+) were more frequent in non-dementia stages, while global(+)striatal(−) was primarily observed in CU individuals.
Conclusions
Our study established robust regional Aβ cutoffs using a CT-based rdcCL method and demonstrated its clinical utility in classifying amyloid subgroups across cognitive stages. These findings highlight the importance of regional Aβ quantification in understanding amyloid pathology and its implications for biomarker-guided diagnosis and treatment in AD.
8.AI-ECG Supported Decision-Making for Coronary Angiography in Acute Chest Pain: The QCG-AID Study
Jiesuck PARK ; Joonghee KIM ; Soyeon AHN ; Youngjin CHO ; Yeonyee E. YOON
Journal of Korean Medical Science 2025;40(12):e105-
This pilot study evaluates an artificial intelligence (AI)-assisted electrocardiography (ECG) analysis system, QCG, to enhance urgent coronary angiography (CAG) decision-making for acute chest pain in the emergency department (ED). We retrospectively analyzed 300 ED cases, categorized as non-coronary chest pain (Group 1), acute coronary syndrome (ACS) without occlusive coronary artery disease (CAD) (Group 2), and ACS with occlusive CAD (Group 3). Six clinicians made urgent CAG decision using a conventional approach (clinical data and ECG) and a QCG-assisted approach (including QCG scores). The QCG-assisted approach improved correct CAG decisions in Group 2 (36.0% vs. 45.3%, P = 0.003) and Group 3 (85.3% vs. 90.0%, P = 0.017), with minimal impact in Group 1 (92.7% vs. 95.0%, P = 0.125). Diagnostic accuracy for ACS improved from 77% to 81% with QCG assistance and reached 82% with QCG alone, supporting AI's potential to enhance urgent CAG decisionmaking for ED chest pain cases.
9.Extracellular Vimentin Alters Energy Metabolism And Induces Adipocyte Hypertrophy
Ji-Hae PARK ; Soyeon KWON ; Young Mi PARK
Diabetes & Metabolism Journal 2024;48(2):215-230
Background:
Previous studies have reported that oxidative stress contributes to obesity characterized by adipocyte hypertrophy. However, mechanism has not been studied extensively. In the current study, we evaluated role of extracellular vimentin secreted by oxidized low-density lipoprotein (oxLDL) in energy metabolism in adipocytes.
Methods:
We treated 3T3-L1-derived adipocytes with oxLDL and measured vimentin which was secreted in the media. We evaluated changes in uptake of glucose and free fatty acid, expression of molecules functioning in energy metabolism, synthesis of adenosine triphosphate (ATP) and lactate, markers for endoplasmic reticulum (ER) stress and autophagy in adipocytes treated with recombinant vimentin.
Results:
Adipocytes secreted vimentin in response to oxLDL. Microscopic evaluation revealed that vimentin treatment induced increase in adipocyte size and increase in sizes of intracellular lipid droplets with increased intracellular triglyceride. Adipocytes treated with vimentin showed increased uptake of glucose and free fatty acid with increased expression of plasma membrane glucose transporter type 1 (GLUT1), GLUT4, and CD36. Vimentin treatment increased transcription of GLUT1 and hypoxia-inducible factor 1α (Hif-1α) but decreased GLUT4 transcription. Adipose triglyceride lipase (ATGL), peroxisome proliferator-activated receptor γ (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), diacylglycerol O-acyltransferase 1 (DGAT1) and 2 were decreased by vimentin treatment. Markers for ER stress were increased and autophagy was impaired in vimentin-treated adipocytes. No change was observed in synthesis of ATP and lactate in the adipocytes treated with vimentin.
Conclusion
We concluded that extracellular vimentin regulates expression of molecules in energy metabolism and promotes adipocyte hypertrophy. Our results show that vimentin functions in the interplay between oxidative stress and metabolism, suggesting a mechanism by which adipocyte hypertrophy is induced in oxidative stress.
10.Risk of Ischemic Stroke in Relation to Helicobacter pylori Infection and Eradication Status: A Large-Scale Prospective Observational Cohort Study
Eun-Bi JEON ; Nayoung KIM ; Beom Joon KIM ; In-Chang HWANG ; Sang Bin KIM ; Ji-Hyun KIM ; Yonghoon CHOI ; Yu Kyung JUN ; Hyuk YOON ; Cheol Min SHIN ; Young Soo PARK ; Dong Ho LEE ; Soyeon AHN
Gut and Liver 2024;18(4):642-653
Background/Aims:
A few studies have suggested the association between Helicobacter pylori (HP) infection and ischemic stroke. However, the impact of HP eradication on stroke risk has not been well evaluated. This study aimed to assess the influence of HP eradication on the incidence of ischemic stroke, considering the potential effect of sex.
Methods:
This prospective observational cohort study was conducted at Seoul National University Bundang Hospital, from May 2003 to February 2023, and involved gastroscopy-based HP testing. Propensity score (PS) matching was employed to ensure balanced groups by matching patients in the HP eradicated group (n=2,803) in a 3:1 ratio with patients in the HP non-eradicated group (n=960). Cox proportional hazard regression analysis was used to evaluate the risk of ischemic stroke.
Results:
Among 6,664 patients, multivariate analysis after PS matching indicated that HP eradication did not significantly alter the risk of ischemic stroke (hazard ratio, 0.531; 95% confidence interval, 0.221 to 1.270; p=0.157). Sex-specific subgroup analyses, both univariate and multivariate, did not yield statistically significant differences. However, Kaplan-Meier analysis revealed a potential trend: the females in the HP eradicated group exhibited a lower incidence of ischemic stroke than those in the HP non-eradicated group, although this did not reach statistical significance (p=0.057).
Conclusions
This finding suggests that HP eradication might not impact the risk of ischemic stroke. However, there was a trend showing that females potentially had a lower risk of ischemic stroke following HP eradication, though further investigation is required to establish definitive evidence.

Result Analysis
Print
Save
E-mail