1.Neural network for auditory speech enhancement featuring feedback-driven attention and lateral inhibition.
Yudong CAI ; Xue LIU ; Xiang LIAO ; Yi ZHOU
Journal of Biomedical Engineering 2025;42(1):82-89
The processing mechanism of the human brain for speech information is a significant source of inspiration for the study of speech enhancement technology. Attention and lateral inhibition are key mechanisms in auditory information processing that can selectively enhance specific information. Building on this, the study introduces a dual-branch U-Net that integrates lateral inhibition and feedback-driven attention mechanisms. Noisy speech signals input into the first branch of the U-Net led to the selective feedback of time-frequency units with high confidence. The generated activation layer gradients, in conjunction with the lateral inhibition mechanism, were utilized to calculate attention maps. These maps were then concatenated to the second branch of the U-Net, directing the network's focus and achieving selective enhancement of auditory speech signals. The evaluation of the speech enhancement effect was conducted by utilising five metrics, including perceptual evaluation of speech quality. This method was compared horizontally with five other methods: Wiener, SEGAN, PHASEN, Demucs and GRN. The experimental results demonstrated that the proposed method improved speech signal enhancement capabilities in various noise scenarios by 18% to 21% compared to the baseline network across multiple performance metrics. This improvement was particularly notable in low signal-to-noise ratio conditions, where the proposed method exhibited a significant performance advantage over other methods. The speech enhancement technique based on lateral inhibition and feedback-driven attention mechanisms holds significant potential in auditory speech enhancement, making it suitable for clinical practices related to artificial cochleae and hearing aids.
Humans
;
Attention/physiology*
;
Speech Perception/physiology*
;
Neural Networks, Computer
;
Speech
;
Noise
;
Feedback
2.Cross-session motor imagery-electroencephalography decoding with Riemannian spatial filtering and domain adaptation.
Lincong PAN ; Xinwei SUN ; Kun WANG ; Yupei CAO ; Minpeng XU ; Dong MING
Journal of Biomedical Engineering 2025;42(2):272-279
Motor imagery (MI) is a mental process that can be recognized by electroencephalography (EEG) without actual movement. It has significant research value and application potential in the field of brain-computer interface (BCI) technology. To address the challenges posed by the non-stationary nature and low signal-to-noise ratio of MI-EEG signals, this study proposed a Riemannian spatial filtering and domain adaptation (RSFDA) method for improving the accuracy and efficiency of cross-session MI-BCI classification tasks. The approach addressed the issue of inconsistent data distribution between source and target domains through a multi-module collaborative framework, which enhanced the generalization capability of cross-session MI-EEG classification models. Comparative experiments were conducted on three public datasets to evaluate RSFDA against eight existing methods in terms of classification accuracy and computational efficiency. The experimental results demonstrated that RSFDA achieved an average classification accuracy of 79.37%, outperforming the state-of-the-art deep learning method Tensor-CSPNet (76.46%) by 2.91% ( P < 0.01). Furthermore, the proposed method showed significantly lower computational costs, requiring only approximately 3 minutes of average training time compared to Tensor-CSPNet's 25 minutes, representing a reduction of 22 minutes. These findings indicate that the RSFDA method demonstrates superior performance in cross-session MI-EEG classification tasks by effectively balancing accuracy and efficiency. However, its applicability in complex transfer learning scenarios remains to be further investigated.
Electroencephalography/methods*
;
Brain-Computer Interfaces
;
Humans
;
Imagination/physiology*
;
Signal Processing, Computer-Assisted
;
Movement/physiology*
;
Signal-To-Noise Ratio
;
Deep Learning
;
Algorithms
3.Low-intensity pulsed ultrasound treatment in erectile dysfunction.
Shi-Yun LIU ; Si-Yu LIU ; Bang-Min HAN ; Shu-Jie XIA
Asian Journal of Andrology 2025;27(6):673-679
Low-intensity pulsed ultrasound (LIPUS) is a non-invasive sonodynamic therapy that has been approved by the U.S. Food and Drug Administration for clinical use. Clinical trials have demonstrated that LIPUS ameliorates mild-to-moderate erectile dysfunction without adverse events. Histological analysis of the corpus cavernosum suggests that the therapeutic benefits of LIPUS may be attributed to alleviation of fibrosis, enhanced neovascularization, and promotion of innervation. Further investigations have revealed that LIPUS facilitates cavernous tissue repair through non-thermal mechanisms, including a cavitation effect, acoustic streaming, mass transfer enhancement, and direct mechanical stimulation. Mechanobiological transduction triggers molecular signaling cascades within endogenous cavernous cells, thereby stimulating cell proliferation, angiogenesis, extracellular matrix remodeling, and stem cell differentiation. Although LIPUS has the potential to induce cavernous rehabilitation in the treatment of erectile dysfunction, further investigations are necessary to elucidate the mechanisms via which LIPUS regulates each type of cavernous cell to determine the optimal parameters for this innovative therapy.
Male
;
Humans
;
Erectile Dysfunction/therapy*
;
Ultrasonic Therapy/methods*
;
Penis/pathology*
;
Ultrasonic Waves
4.Progress on ultrasound-responsive piezoelectric drug delivery system for treatment of neurodegenerative diseases.
Journal of Zhejiang University. Medical sciences 2025;54(4):522-528
Ultrasound has emerged as a non-invasive neural modulation technique. Its mechanisms of action in the brain involve mechanical, cavitation, and thermal effects, which modulate neural activity by activating mechanosensitive ion channels, enhancing cell permeability, and improving blood circulation. The ultrasound-piezo-electric systems, based on the coupling between ultrasound and piezoelectric materials, can generate wireless electrical stimulation to promote neural repair, significantly improving therapeutic outcomes for neurodegenerative diseases and showing potential as a replacement for traditional invasive deep brain stimulation techniques. The ultrasound-responsive piezoelectric drug delivery system combines mechano-electrical conversion capability of piezoelectric materials with the non-invasive penetration advantage of ultrasound. This system achieves synergistic therapeutic effects for neurodegenerative diseases through on-demand drug release and wireless electrical stimulation in deep brain regions. It can effectively overcome the blood-brain barrier limitation, enabling precisely targeted drug delivery to specific brain regions. Simultaneously, it generates electrical stimulation in deep brain areas to exert synergistic neuroreparative effects. Together, these capabilities provide a more precise, efficient, and safe solution for treating neurodegenerative diseases. This review summarizes the neural regulatory mechanisms, technical advantages, and research progress of the ultrasound-responsive piezoelectric drug delivery systems for neurodegenerative disease therapy, aiming to offer novel insights for the field.
Humans
;
Neurodegenerative Diseases/drug therapy*
;
Drug Delivery Systems/methods*
;
Blood-Brain Barrier
;
Ultrasonic Waves
;
Brain
;
Ultrasonic Therapy
;
Deep Brain Stimulation/methods*
5.Just 1-min exposure to a pure tone at 100 Hz with daily exposable sound pressure levels may improve motion sickness.
Yishuo GU ; Nobutaka OHGAMI ; Tingchao HE ; Takumi KAGAWA ; Fitri KURNIASARI ; Keming TONG ; Xiang LI ; Akira TAZAKI ; Kodai TAKEDA ; Masahiro MOURI ; Masashi KATO
Environmental Health and Preventive Medicine 2025;30():22-22
BACKGROUND:
Motion sickness is a common transportation issue worldwide. Vestibular dysfunction has been reported to be a key etiology of motion sickness. However, there are limited technologies for alleviating motion sickness.
METHODS:
The most appropriate frequency (Hz) and level (dBZ) of pure tone for modulation of vestibular function were determined by an ex vivo study using murine utricle explants. The preventive effects of the selected pure tone on motion sickness were then confirmed by using a beam balance test in mice. The alleviating effects of pure tone on motion sickness induced by a swing, driving simulator or real car were objectively assessed by using posturography and electrocardiography (ECG) and were subjectively assessed by using the Motion Sickness Assessment Questionnaire (MSAQ) in humans.
RESULTS:
The effect of short-term (≤5 min) exposure to a pure tone of 80-85 dBZ (= 60.9-65.9 dBA) at 100 Hz on motion sickness was investigated in mice and humans. A mouse study showed a long-lasting (≥120 min) alleviative effect on shaking-mediated exacerbated beam test scores by 5-min exposure to a pure tone of 85 dBZ at 100 Hz, which was ex vivo determined as a sound activating vestibular function, before shaking. Human studies further showed that 1-min exposure to a pure tone of 80-85 dBZ (= 60.9-65.9 dBA) at 100 Hz before shaking improved the increased envelope areas in posturography caused by the shakings of a swing, a driving simulator and a vehicle. Driving simulator-mediated activation of sympathetic nerves assessed by the heart rate variable (HRV) and vehicle-mediated increased scores of the MSAQ were improved by pure tone exposure before the shaking.
CONCLUSION:
Since the exacerbated results of posturography and HRV reflect shaking-mediated imbalance and autonomic dysfunction, respectively, the results suggest that the imbalance and autonomic dysregulation in motion sickness could be improved by just 1-min exposure to a pure tone with daily exposable sound pressure levels.
TRIAL REGISTRATION
Registration number: UMIN000022413 (2016/05/23-2023/04/19) and UMIN000053735 (2024/02/29-present).
Motion Sickness/therapy*
;
Animals
;
Mice
;
Humans
;
Male
;
Adult
;
Female
;
Sound
;
Middle Aged
;
Young Adult
;
Mice, Inbred C57BL
6.Environmental noise perception and risk of poor mental health in a region on the Mediterranean coast of Spain.
Andreu NOLASCO ; Jesús RABASCO ; Nayara TAMAYO-FONSECA ; Javier CASILLAS-CLOT ; Pamela PEREYRA-ZAMORA
Environmental Health and Preventive Medicine 2025;30():37-37
BACKGROUND:
Exposure to environmental noise may have a negative impact on a population's mental health. We estimated the prevalence of exposure perception to high environmental noise in the Valencian Community, a region on the Mediterranean coast of Spain, and analysed its association with poor mental health risk, adjusting for demographic, socioeconomic and health status variables.
METHODS:
Cross-sectional study based on a sample of 5.485 subjects, aged 15 or above, of the 2016 Valencian Community Health Survey. The risk of poor mental health was assessed via Goldberg's questionnaire, a highly standardized self-reported questionnaire designed to screen for general psychological distress in the general population. Noise perception were determined in the home environment based on individuals' responses to the Valencian Survey question about external noise problems. Sociodemographic variables, such as sex, age, level of education, or country of birth, and health variables, such as self-perceived health, or chronic diseases, were also considered. Logistic regression was used to estimate the Odds Ratios and confidence intervals of association between variables according to sex.
RESULTS:
The prevalence of poor mental health was 26.2% [n = 2665; 95% CI: 24.5-27.9] in men and 33.6% [n = 2820; 95% CI: 31.9-35.3] in women. A total of 7.8% [n = 5485; 95% CI: 6.8-8.8] presented exposure to high noise perception, with no differences according to sex. Being at risk of poor mental health was significantly associated (p < 0.05) with high noise perception after adjusting for the rest of the variables (OR: 2.16 [95% CI: 1.46-3.19] in men; 2.46 [95% CI: 1.72-3.50] in women).
CONCLUSIONS
Although the prevalence of exposure perception to high noise was not very high, population subgroups presenting high values were detected. High noise perception was related to the risk of poor mental health, regardless of other variables. Poor mental health risk was associated with exposure perception to high noise, other socioeconomic determinants, and health status. Improving noise exposure conditions could reduce the risk of poor mental health.
Humans
;
Spain/epidemiology*
;
Male
;
Female
;
Adult
;
Middle Aged
;
Noise/adverse effects*
;
Cross-Sectional Studies
;
Young Adult
;
Adolescent
;
Environmental Exposure/adverse effects*
;
Aged
;
Mental Health/statistics & numerical data*
;
Prevalence
;
Mental Disorders/epidemiology*
;
Risk Factors
7.Reduction in mitochondrial DNA methylation leads to compensatory increase in mitochondrial DNA content: novel blood-borne biomarkers for monitoring occupational noise.
Jia-Hao YANG ; Zhuo-Ran LI ; Zhuo-Zhang TAN ; Wu-Zhong LIU ; Qiang HOU ; Pin SUN ; Xue-Tao ZHANG
Environmental Health and Preventive Medicine 2025;30():40-40
BACKGROUND:
Prolonged occupational noise exposure poses potential health risks, but its impact on mitochondrial DNA (mtDNA) damage and methylation patterns remains unclear.
METHOD:
We recruited 306 factory workers, using average binaural high-frequency hearing thresholds from pure-tone audiometry to assess noise exposure. MtDNA damage was evaluated through mitochondrial DNA copy number (mtDNAcn) and lesion rate, and mtDNA methylation changes were identified via pyrophosphate sequencing.
RESULTS:
There was a reduction in MT-RNR1 methylation of 4.52% (95% CI: -7.43% to -1.62%) among workers with abnormal hearing, whereas changes in the D-loop region were not statistically significant (β = -2.06%, 95% CI: -4.44% to 0.31%). MtDNAcn showed a negative association with MT-RNR1 methylation (β = -0.95, 95% CI: -1.23 to -0.66), while no significant link was found with D-loop methylation (β = -0.05, 95% CI: -0.58 to 0.48). Mediation analysis indicated a significant increase in mtDNAcn by 10.75 units (95% CI: 3.00 to 21.26) in those with abnormal hearing, with MT-RNR1 methylation mediating 35.9% of this effect.
CONCLUSIONS
These findings suggest that occupational noise exposure may influence compensatory increases in mtDNA content through altered MT-RNR1 methylation.
Humans
;
DNA, Mitochondrial
;
DNA Methylation
;
Male
;
Adult
;
Noise, Occupational/adverse effects*
;
Middle Aged
;
Occupational Exposure/adverse effects*
;
Biomarkers/blood*
;
Female
8.Study on the Clinical Application Effect of Low-Field Infant MRI.
Caixian ZHENG ; Siwei XIANG ; Chang SU ; Linyi ZHANG ; Can LAI ; Tianming YUAN ; Lu ZHOU ; Yunming SHEN ; Kun ZHENG
Chinese Journal of Medical Instrumentation 2025;49(5):501-506
OBJECTIVE:
Evaluate the clinical application effect of low-field infant MRI.
METHODS:
Using literature review, expert consultation, and two rounds of Delphi to determine the evaluation index system. Then retrospectively analyze and compare the data of low-field infant MRI and high-field MRI from January 2023 to December 2024.
RESULTS:
There is a certain gap between low-field infant MRI and high-field MRI in terms of signal-to-noise ratio, image uniformity, software system reliability, scanning time, user interface friendliness and image result consistency. However, there was no difference in terms of spatial resolution and image quality. The noise, hardware system reliability, mean time between failure and the rate of examination completed without sedation are better than that of high-field MRI.
CONCLUSION
Low-field infant MRI meets needs of clinical diagnostic and has stable performance. It can be used as a routine screening tool for brain diseases near the bed.
Magnetic Resonance Imaging/methods*
;
Humans
;
Infant
;
Retrospective Studies
;
Signal-To-Noise Ratio
;
Reproducibility of Results
;
Brain Diseases/diagnostic imaging*
;
Brain/diagnostic imaging*
;
Software
9.Beneficial Effects of Dendrobium officinale Extract on Insomnia Rats Induced by Strong Light and Noise via Regulating GABA and GABAA Receptors.
Heng-Pu ZHOU ; Jie SU ; Ke-Jian WEI ; Su-Xiang WU ; Jing-Jing YU ; Yi-Kang YU ; Zhuang-Wei NIU ; Xiao-Hu JIN ; Mei-Qiu YAN ; Su-Hong CHEN ; Gui-Yuan LYU
Chinese journal of integrative medicine 2025;31(6):490-498
OBJECTIVE:
To explore the therapeutic effects and underlying mechanisms of Dendrobium officinale (Tiepi Shihu) extract (DOE) on insomnia.
METHODS:
Forty-two male Sprague-Dawley rats were randomly divided into 6 groups (n=7 per group): normal control, model control, melatonin (MT, 40 mg/kg), and 3-dose DOE (0.25, 0.50, and 1.00 g/kg) groups. Rats were raised in a strong-light (10,000 LUX) and -noise (>80 db) environment (12 h/d) for 16 weeks to induce insomnia, and from week 10 to week 16, MT and DOE were correspondingly administered to rats. The behavior tests including sodium pentobarbital-induced sleep experiment, sucrose preference test, and autonomous activity test were used to evaluate changes in sleep and emotions of rats. The metabolic-related indicators such as blood pressure, blood viscosity, blood glucose, and uric acid in rats were measured. The pathological changes in the cornu ammonis 1 (CA1) region of rat brain were evaluated using hematoxylin and eosin staining and Nissl staining. Additionally, the sleep-related factors gamma-aminobutyric acid (GABA), glutamate (GA), 5-hydroxytryptamine (5-HT), and interleukin-6 (IL-6) were measured using enzyme linked immunosorbent assay. Finally, we screened potential sleep-improving receptors of DOE using polymerase chain reaction (PCR) array and validated the results with quantitative PCR and immunohistochemistry.
RESULTS:
DOE significantly improved rats' sleep and mood, increased the sodium pentobarbital-induced sleep time and sucrose preference index, and reduced autonomic activity times (P<0.05 or P<0.01). DOE also had a good effect on metabolic abnormalities, significantly reducing triglyceride, blood glucose, blood pressure, and blood viscosity indicators (P<0.05 or P<0.01). DOE significantly increased the GABA content in hippocampus and reduced the GA/GABA ratio and IL-6 level (P<0.05 or P<0.01). In addition, DOE improved the pathological changes such as the disorder of cell arrangement in the hippocampus and the decrease of Nissel bodies. Seven differential genes were screened by PCR array, and the GABAA receptors (Gabra5, Gabra6, Gabrq) were selected for verification. The results showed that DOE could up-regulate their expressions (P<0.05 or P<0.01).
CONCLUSION
DOE demonstrated remarkable potential for improving insomnia, which may be through regulating GABAA receptors expressions and GA/GABA ratio.
Animals
;
Dendrobium/chemistry*
;
Rats, Sprague-Dawley
;
Male
;
Sleep Initiation and Maintenance Disorders/blood*
;
Plant Extracts/therapeutic use*
;
Receptors, GABA-A/metabolism*
;
Noise/adverse effects*
;
Light/adverse effects*
;
gamma-Aminobutyric Acid/metabolism*
;
Sleep/drug effects*
;
Rats
;
Receptors, GABA/metabolism*
10.Clinical characteristics and therapeutic effect analysis of blast-induced hearing loss.
Yang CAO ; Xiaonan WU ; Jin LI ; Hongyang WANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(3):228-238
Objective:To investigate the clinical characteristics and treatment outcomes of patients with blast-induced hearing loss(BIHL). Methods:The clinical features, laboratory parameters, audiometric profiles, and treatment efficacy of patients with blast induced hearing loss and those with idiopathic sudden hearing loss(ISHL) were analyzed using t-tests, Wilcoxon rank-sum tests, and chi-square tests, with a significance level set at P<0.05. Results:A total of 59 patients in the BIHL group and 117 patients in the ISHL group were included in this study. The mean age of the BIHL group was(39.07±14.49) years, comprising 45 males and 14 females. After the blast, 21 patients went to the hospital within the initial 14-day period, and an additional 38 patients seeking admission thereafter. In the BIHL group, 33 patients had unilateral hearing loss with PTA of (50.30±28.85) dB HL, while 26 had bilateral hearing loss with a PTA of(44.54±26.22) dB HL. In comparison, among the ISHL group, 112 patients had unilateral hearing loss with a PTA of(56.28±14.19) dB HL, and 5 had bilateral involvement with a PTA of(56.25±35.14) dB HL. The effective treatment rate within 14 days for the BIHL group was 31.8%, while for the ISHL group, the effective rate within 14 days was 77.0%. Conclusion:Blast-induced hearing loss is caused by exposure to high-intensity noise. The overall treatment effectiveness during hospitalization is lower compared to idiopathic sudden hearing loss, and the treatment window is shorter. Therefore, greater emphasis should be placed on prevention.
Humans
;
Male
;
Female
;
Adult
;
Middle Aged
;
Young Adult
;
Blast Injuries/therapy*
;
Treatment Outcome
;
Hearing Loss, Sudden/etiology*
;
Adolescent
;
Hearing Loss, Noise-Induced/diagnosis*

Result Analysis
Print
Save
E-mail