1.ERRATUM: Imaging follow-up strategy after endovascular treatment of intracranial aneurysms: A literature review and guideline recommendations
Yong-Hwan CHO ; Jaehyung CHOI ; Chae-Wook HUH ; Chang Hyeun KIM ; Chul Hoon CHANG ; Soon Chan KWON ; Young Woo KIM ; Seung Hun SHEEN ; Sukh Que PARK ; Jun Kyeung KO ; Sung-kon HA ; Hae Woong JEONG ; Hyen Seung KANG ;
Journal of Cerebrovascular and Endovascular Neurosurgery 2025;27(1):80-80
2.ERRATUM: Imaging follow-up strategy after endovascular treatment of intracranial aneurysms: A literature review and guideline recommendations
Yong-Hwan CHO ; Jaehyung CHOI ; Chae-Wook HUH ; Chang Hyeun KIM ; Chul Hoon CHANG ; Soon Chan KWON ; Young Woo KIM ; Seung Hun SHEEN ; Sukh Que PARK ; Jun Kyeung KO ; Sung-kon HA ; Hae Woong JEONG ; Hyen Seung KANG ;
Journal of Cerebrovascular and Endovascular Neurosurgery 2025;27(1):80-80
3.ERRATUM: Imaging follow-up strategy after endovascular treatment of intracranial aneurysms: A literature review and guideline recommendations
Yong-Hwan CHO ; Jaehyung CHOI ; Chae-Wook HUH ; Chang Hyeun KIM ; Chul Hoon CHANG ; Soon Chan KWON ; Young Woo KIM ; Seung Hun SHEEN ; Sukh Que PARK ; Jun Kyeung KO ; Sung-kon HA ; Hae Woong JEONG ; Hyen Seung KANG ;
Journal of Cerebrovascular and Endovascular Neurosurgery 2025;27(1):80-80
4.Imaging follow-up strategy after endovascular treatment of Intracranial aneurysms: A literature review and guideline recommendations
Yong-Hwan CHO ; Jaehyung CHOI ; Chae-Wook HUH ; Chang Hyeun KIM ; Chul Hoon CHANG ; Soon Chan KWON ; Young Woo KIM ; Seung Hun SHEEN ; Sukh Que PARK ; Jun Kyeung KO ; Sung-kon HA ; Hae Woong JEONG ; Hyen Seung KANG ;
Journal of Cerebrovascular and Endovascular Neurosurgery 2024;26(1):13-22
Objective:
Endovascular coil embolization is the primary treatment modality for intracranial aneurysms. However, its long-term durability remains of concern, with a considerable proportion of cases requiring aneurysm reopening and retreatment. Therefore, establishing optimal follow-up imaging protocols is necessary to ensure a durable occlusion. This study aimed to develop guidelines for follow-up imaging strategies after endovascular treatment of intracranial aneurysms.
Methods:
A committee comprising members of the Korean Neuroendovascular Society and other relevant societies was formed. A literature review and analyses of the major published guidelines were conducted to gather evidence. A panel of 40 experts convened to achieve a consensus on the recommendations using the modified Delphi method.
Results:
The panel members reached the following consensus: 1. Schedule the initial follow-up imaging within 3-6 months of treatment. 2. Noninvasive imaging modalities, such as three-dimensional time-of-flight magnetic resonance angiography (MRA) or contrast-enhanced MRA, are alternatives to digital subtraction angiography (DSA) during the first follow-up. 3. Schedule mid-term follow-up imaging at 1, 2, 4, and 6 years after the initial treatment. 4. If noninvasive imaging reveals unstable changes in the treated aneurysms, DSA should be considered. 5. Consider late-term follow-up imaging every 3–5 years for lifelong monitoring of patients with unstable changes or at high risk of recurrence.
Conclusions
The guidelines aim to provide physicians with the information to make informed decisions and provide patients with high-quality care. However, owing to a lack of specific recommendations and scientific data, these guidelines are based on expert consensus and should be considered in conjunction with individual patient characteristics and circumstances.
5.Epidemiologic and Clinical Outcomes of Pediatric Renal Tumors in Korea: A Retrospective Analysis of The Korean Pediatric Hematology and Oncology Group (KPHOG) Data
Kyung-Nam KOH ; Jung Woo HAN ; Hyoung Soo CHOI ; Hyoung Jin KANG ; Ji Won LEE ; Keon Hee YOO ; Ki Woong SUNG ; Hong Hoe KOO ; Kyung Taek HONG ; Jung Yoon CHOI ; Sung Han KANG ; Hyery KIM ; Ho Joon IM ; Seung Min HAHN ; Chuhl Joo LYU ; Hee-Jo BAEK ; Hoon KOOK ; Kyung Mi PARK ; Eu Jeen YANG ; Young Tak LIM ; Seongkoo KIM ; Jae Wook LEE ; Nack-Gyun CHUNG ; Bin CHO ; Meerim PARK ; Hyeon Jin PARK ; Byung-Kiu PARK ; Jun Ah LEE ; Jun Eun PARK ; Soon Ki KIM ; Ji Yoon KIM ; Hyo Sun KIM ; Youngeun MA ; Kyung Duk PARK ; Sang Kyu PARK ; Eun Sil PARK ; Ye Jee SHIM ; Eun Sun YOO ; Kyung Ha RYU ; Jae Won YOO ; Yeon Jung LIM ; Hoi Soo YOON ; Mee Jeong LEE ; Jae Min LEE ; In-Sang JEON ; Hye Lim JUNG ; Hee Won CHUEH ; Seunghyun WON ;
Cancer Research and Treatment 2023;55(1):279-290
Purpose:
Renal tumors account for approximately 7% of all childhood cancers. These include Wilms tumor (WT), clear cell sarcoma of the kidney (CCSK), malignant rhabdoid tumor of the kidney (MRTK), renal cell carcinoma (RCC), congenital mesoblastic nephroma (CMN) and other rare tumors. We investigated the epidemiology of pediatric renal tumors in Korea.
Materials and Methods:
From January 2001 to December 2015, data of pediatric patients (0–18 years) newly-diagnosed with renal tumors at 26 hospitals were retrospectively analyzed.
Results:
Among 439 patients (male, 240), the most common tumor was WT (n=342, 77.9%), followed by RCC (n=36, 8.2%), CCSK (n=24, 5.5%), MRTK (n=16, 3.6%), CMN (n=12, 2.7%), and others (n=9, 2.1%). Median age at diagnosis was 27.1 months (range 0-225.5) and median follow-up duration was 88.5 months (range 0-211.6). Overall, 32 patients died, of whom 17, 11, 1, and 3 died of relapse, progressive disease, second malignant neoplasm, and treatment-related mortality. Five-year overall survival and event free survival were 97.2% and 84.8% in WT, 90.6% and 82.1% in RCC, 81.1% and 63.6% in CCSK, 60.3% and 56.2% in MRTK, and 100% and 91.7% in CMN, respectively (p < 0.001).
Conclusion
The pediatric renal tumor types in Korea are similar to those previously reported in other countries. WT accounted for a large proportion and survival was excellent. Non-Wilms renal tumors included a variety of tumors and showed inferior outcome, especially MRTK. Further efforts are necessary to optimize the treatment and analyze the genetic characteristics of pediatric renal tumors in Korea.
6.The role of the iliotibial band cross-sectional area as a morphological parameter of the iliotibial band friction syndrome:a retrospective pilot study
Jiyeon PARK ; Hyung Rae CHO ; Keum Nae KANG ; Kun Woong CHOI ; Young Soon CHOI ; Hye-Won JEONG ; Jungmin YI ; Young Uk KIM
The Korean Journal of Pain 2021;34(2):229-233
Background:
Iliotibial band friction syndrome (ITBFS) is a common disorder of the lateral knee. Previous research has reported that the iliotibial band (ITB) thickness (ITBT) is correlated with ITBFS, and ITBT has been considered to be a key morphologic parameter of ITBFS. However, the thickness is different from inflammatory hypertrophy. Thus, we made the ITB cross-sectional area (ITBCSA) a new morphological parameter to assess ITBFS.
Methods:
Forty-three patients with ITBFS group and from 43 normal group who underwent T1W magnetic resonance imaging were enrolled. The ITBCSA was measured as the cross-sectional area of the ITB that was most hypertrophied in the magnetic resonance axial images. The ITBT was measured as the thickest site of ITB.
Results:
The mean ITBCSA was 25.24 ± 6.59 mm 2 in the normal group and 38.75 ± 9.11 mm 2 in the ITBFS group. The mean ITBT was 1.94 ± 0.41 mm in the normal group and 2.62 ± 0.46 mm in the ITBFS group. Patients in ITBFS group had significantly higher ITBCSA (P < 0.001) and ITBT (P < 0.001) than the normal group. A receiver operator characteristic curve analysis demonstrated that the best cut-off value of the ITBT was 2.29 mm, with 76.7% sensitivity, 79.1% specificity, and area under the curve (AUC) 0.88. The optimal cut-off score of the ITBCSA was 30.66 mm 2 , with 79.1% sensitivity, 79.1% specificity, and AUC 0.87.
Conclusions
ITBCSA is a new and sensitive morphological parameter for diagnosing ITBFS, and may even be more accurate than ITBT.
7.Erratum: Correction of Affiliations in the Article “Clinical Characteristics and Treatment Outcomes in Children, Adolescents, and Young-adults with Hodgkin's Lymphoma: a KPHOG Lymphoma Working-party, Multicenter, Retrospective Study”
Jae Min LEE ; Jung Yoon CHOI ; Kyung Taek HONG ; Hyoung Jin KANG ; Hee Young SHIN ; Hee Jo BAEK ; Hoon KOOK ; Seongkoo KIM ; Jae Wook LEE ; Nack-Gyun CHUNG ; Bin CHO ; Seok-Goo CHO ; Kyung Mi PARK ; Eu Jeen YANG ; Young Tak LIM ; Jin Kyung SUH ; Sung Han KANG ; Hyery KIM ; Kyung-Nam KOH ; Ho Joon IM ; Jong Jin SEO ; Hee Won CHO ; Hee Young JU ; Ji Won LEE ; Keon Hee YOO ; Ki Woong SUNG ; Hong Hoe KOO ; Kyung Duk PARK ; Jeong Ok HAH ; Min Kyoung KIM ; Jung Woo HAN ; Seung Min HAHN ; Chuhl Joo LYU ; Ye Jee SHIM ; Heung Sik KIM ; Young Rok DO ; Jae Won YOO ; Yeon Jung LIM ; In-Sang JEON ; Hee won CHUEH ; Sung Yong OH ; Hyoung Soo CHOI ; Jun Eun PARK ; Jun Ah LEE ; Hyeon Jin PARK ; Byung-Kiu PARK ; Soon Ki KIM ; Jae Young LIM ; Eun Sil PARK ; Sang Kyu PARK ; Eun Jin CHOI ; Young Bae CHOI ; Jong Hyung YOON ;
Journal of Korean Medical Science 2021;36(4):e37-
8.The role of the iliotibial band cross-sectional area as a morphological parameter of the iliotibial band friction syndrome:a retrospective pilot study
Jiyeon PARK ; Hyung Rae CHO ; Keum Nae KANG ; Kun Woong CHOI ; Young Soon CHOI ; Hye-Won JEONG ; Jungmin YI ; Young Uk KIM
The Korean Journal of Pain 2021;34(2):229-233
Background:
Iliotibial band friction syndrome (ITBFS) is a common disorder of the lateral knee. Previous research has reported that the iliotibial band (ITB) thickness (ITBT) is correlated with ITBFS, and ITBT has been considered to be a key morphologic parameter of ITBFS. However, the thickness is different from inflammatory hypertrophy. Thus, we made the ITB cross-sectional area (ITBCSA) a new morphological parameter to assess ITBFS.
Methods:
Forty-three patients with ITBFS group and from 43 normal group who underwent T1W magnetic resonance imaging were enrolled. The ITBCSA was measured as the cross-sectional area of the ITB that was most hypertrophied in the magnetic resonance axial images. The ITBT was measured as the thickest site of ITB.
Results:
The mean ITBCSA was 25.24 ± 6.59 mm 2 in the normal group and 38.75 ± 9.11 mm 2 in the ITBFS group. The mean ITBT was 1.94 ± 0.41 mm in the normal group and 2.62 ± 0.46 mm in the ITBFS group. Patients in ITBFS group had significantly higher ITBCSA (P < 0.001) and ITBT (P < 0.001) than the normal group. A receiver operator characteristic curve analysis demonstrated that the best cut-off value of the ITBT was 2.29 mm, with 76.7% sensitivity, 79.1% specificity, and area under the curve (AUC) 0.88. The optimal cut-off score of the ITBCSA was 30.66 mm 2 , with 79.1% sensitivity, 79.1% specificity, and AUC 0.87.
Conclusions
ITBCSA is a new and sensitive morphological parameter for diagnosing ITBFS, and may even be more accurate than ITBT.
9.Clinical Guidance for Point-of-Care Ultrasound in the Emergency and Critical Care Areas after Implementing Insurance Coverage in Korea
Wook Jin CHOI ; Young Rock HA ; Je Hyeok OH ; Young Soon CHO ; Won Woong LEE ; You Dong SOHN ; Gyu Chong CHO ; Chan Young KOH ; Han Ho DO ; Won Joon JEONG ; Seung Mok RYOO ; Jae Hyun KWON ; Hyung Min KIM ; Su Jin KIM ; Chan Yong PARK ; Jin Hee LEE ; Jae Hoon LEE ; Dong Hyun LEE ; Sin Youl PARK ; Bo Seung KANG
Journal of Korean Medical Science 2020;35(7):54-
Point-of-care ultrasound (POCUS) is a useful tool that is widely used in the emergency and intensive care areas. In Korea, insurance coverage of ultrasound examination has been gradually expanding in accordance with measures to enhance Korean National Insurance Coverage since 2017 to 2021, and which will continue until 2021. Full coverage of health insurance for POCUS in the emergency and critical care areas was implemented in July 2019. The National Health Insurance Act classified POCUS as a single or multiple-targeted ultrasound examination (STU vs. MTU). STU scans are conducted of one organ at a time, while MTU includes scanning of multiple organs simultaneously to determine each clinical situation. POCUS can be performed even if a diagnostic ultrasound examination is conducted, based on the physician's decision. However, the Health Insurance Review and Assessment Service plans to monitor the prescription status of whether the POCUS and diagnostic ultrasound examinations are prescribed simultaneously and repeatedly. Additionally, MTU is allowed only in cases of trauma, cardiac arrest, shock, chest pain, and dyspnea and should be performed by a qualified physician. Although physicians should scan all parts of the chest, heart, and abdomen when they prescribe MTU, they are not required to record all findings in the medical record. Therefore, appropriate prescription, application, and recording of POCUS are needed to enhance the quality of patient care and avoid unnecessary cut of medical budget spending. The present article provides background and clinical guidance for POCUS based on the implementation of full health insurance coverage for POCUS that began in July 2019 in Korea.
Abdomen
;
Budgets
;
Chest Pain
;
Critical Care
;
Dyspnea
;
Emergencies
;
Heart
;
Heart Arrest
;
Insurance Coverage
;
Insurance
;
Insurance, Health
;
Korea
;
Medical Records
;
National Health Programs
;
Patient Care
;
Point-of-Care Systems
;
Prescriptions
;
Shock
;
Thorax
;
Ultrasonography
10.Long-term outcomes of abdominal paraganglioma
Hye Ryeon CHOI ; Zeng YAP ; Soon Min CHOI ; Sun Hyung CHOI ; Jin Kyong KIM ; Cho Rok LEE ; Jandee LEE ; Jong Ju JEONG ; Kee-Hyun NAM ; Woong Youn CHUNG ; Sang-Wook KANG
Annals of Surgical Treatment and Research 2020;99(6):315-319
Purpose:
Paragangliomas (PGL) are rare neuroendocrine tumors derived from chromaffin cells of the autonomic nervous system. We aim to describe our experience and the long-term outcome of abdominal PGL over the last decade.
Methods:
A retrospective review of patients diagnosed with PGL in our hospital between November 2005 and June 2017 was conducted. All nonabdominal PGL were excluded and the clinicopathological features and long-term outcomes of the patients were analyzed.
Results:
A total of 46 patients were diagnosed with abdominal PGL. The average age of diagnosis was 55.4 years and there was no sex predilection. The average tumor size was 5.85 cm and they were predominantly located in the infrarenal position (50%). The mean follow-up period was 42 months (range, 1.8–252 months). All patients with metastases had Pheochromocytoma of the Adrenal Gland Scaled Score (PASS) of ≥4. One patient presented with synchronous metastases while 2 developed local recurrence and distant metastases. One presented with only local recurrence. One patient died 5 years after diagnosis.
Conclusion
Abdominal PGL is a rare tumor with excellent long-term prognosis. Recurrence although uncommon, can occur decades after initial diagnosis. Long-term follow-up is therefore recommended for all patients with PGL, especially in patients with PASS of ≥4.

Result Analysis
Print
Save
E-mail