1.Comparing Stability, Gait, and Functional Score after 40-mm Dual-Mobility Hip Arthroplasty to 36-mm Head Hip Arthroplasty in Elderly Hip Fracture Patients
Yonghan CHA ; Sang-Yeob LEE ; Ji-Ho BAE ; Yang Jae KANG ; Ji-Hoon BAEK ; Joon Soon KANG ; Chan Ho PARK ; Shinjune KIM ; Jun-Il YOO
Clinics in Orthopedic Surgery 2025;17(1):62-70
Background:
This study aimed to compare the intraoperative stability and early clinical outcomes of 40-mm diameter dual mobility (DM)-total hip arthroplasty (THA) with 36-mm ceramic head (large head) THA in active elderly patients with hip fractures.
Methods:
A prospective randomized controlled trial was conducted from May 2022 to December 2022. Inclusion criteria were as follows: age ≥ 60 years, displaced femoral neck fracture, Koval grade 1 or 2, planned 54-mm acetabular component, and over 1-year follow-up. Intraoperative stability tests were performed on all patients (internal rotation at 45°, 60°, and 90° of hip fracture). Functional outcomes (Harris Hip Score and University of California, Los Angeles [UCLA] Score) were evaluated at 6 weeks and 3 months postoperatively. Gait analysis using artificial intelligence (AI) techniques was conducted at 3 months postoperatively.
Results:
The study included 36 DM-THA patients (mean age, 69.6 ± 2.2 years; 44% women) and 37 large head THA patients (mean age, 69.6 ± 1.2 years; 64% women). No statistically significant differences were observed in functional outcomes and hip range of motion between the 2 groups. However, there was a significant difference in the gait speed and stance-swing phase of the large head THA group and the DM-THA group: the DM-THA group demonstrated superior gait speed (2.85 ± 0.83 kph vs. 2.04 ± 1.04 kph, p = 0.003) and higher stance phase ratios (operated side: 63.57% ± 3.82% vs. 48.19% ± 5.50%, p < 0.001; opposite side: 62.77% ± 2.27% vs. 49.93% ± 6.94%, p < 0.001). In the stability test at 90° of hip flexion, the DM-THA group had a measurement of 48.40° ± 5.17°, while the large head THA group had a measurement of 30.94° ± 2.98° (p = 0.012). Despite the lack of statistical significance, the intraoperative stability test showed the dislocation angle was notably different between the groups in the hip flexion position of 60° (51.60° ± 6.09° in the DM-THA group and 40.00° ± 2.80° in the large head THA group, p = 0.072).
Conclusions
Superior results were observed in the intraoperative stability test and early recovery of gait after DM-THA compared to large head THA. We believe that DM-THA can be a useful surgical option for THA in elderly patients with hip fractures.
2.Comparing Stability, Gait, and Functional Score after 40-mm Dual-Mobility Hip Arthroplasty to 36-mm Head Hip Arthroplasty in Elderly Hip Fracture Patients
Yonghan CHA ; Sang-Yeob LEE ; Ji-Ho BAE ; Yang Jae KANG ; Ji-Hoon BAEK ; Joon Soon KANG ; Chan Ho PARK ; Shinjune KIM ; Jun-Il YOO
Clinics in Orthopedic Surgery 2025;17(1):62-70
Background:
This study aimed to compare the intraoperative stability and early clinical outcomes of 40-mm diameter dual mobility (DM)-total hip arthroplasty (THA) with 36-mm ceramic head (large head) THA in active elderly patients with hip fractures.
Methods:
A prospective randomized controlled trial was conducted from May 2022 to December 2022. Inclusion criteria were as follows: age ≥ 60 years, displaced femoral neck fracture, Koval grade 1 or 2, planned 54-mm acetabular component, and over 1-year follow-up. Intraoperative stability tests were performed on all patients (internal rotation at 45°, 60°, and 90° of hip fracture). Functional outcomes (Harris Hip Score and University of California, Los Angeles [UCLA] Score) were evaluated at 6 weeks and 3 months postoperatively. Gait analysis using artificial intelligence (AI) techniques was conducted at 3 months postoperatively.
Results:
The study included 36 DM-THA patients (mean age, 69.6 ± 2.2 years; 44% women) and 37 large head THA patients (mean age, 69.6 ± 1.2 years; 64% women). No statistically significant differences were observed in functional outcomes and hip range of motion between the 2 groups. However, there was a significant difference in the gait speed and stance-swing phase of the large head THA group and the DM-THA group: the DM-THA group demonstrated superior gait speed (2.85 ± 0.83 kph vs. 2.04 ± 1.04 kph, p = 0.003) and higher stance phase ratios (operated side: 63.57% ± 3.82% vs. 48.19% ± 5.50%, p < 0.001; opposite side: 62.77% ± 2.27% vs. 49.93% ± 6.94%, p < 0.001). In the stability test at 90° of hip flexion, the DM-THA group had a measurement of 48.40° ± 5.17°, while the large head THA group had a measurement of 30.94° ± 2.98° (p = 0.012). Despite the lack of statistical significance, the intraoperative stability test showed the dislocation angle was notably different between the groups in the hip flexion position of 60° (51.60° ± 6.09° in the DM-THA group and 40.00° ± 2.80° in the large head THA group, p = 0.072).
Conclusions
Superior results were observed in the intraoperative stability test and early recovery of gait after DM-THA compared to large head THA. We believe that DM-THA can be a useful surgical option for THA in elderly patients with hip fractures.
3.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
4.Comparing Stability, Gait, and Functional Score after 40-mm Dual-Mobility Hip Arthroplasty to 36-mm Head Hip Arthroplasty in Elderly Hip Fracture Patients
Yonghan CHA ; Sang-Yeob LEE ; Ji-Ho BAE ; Yang Jae KANG ; Ji-Hoon BAEK ; Joon Soon KANG ; Chan Ho PARK ; Shinjune KIM ; Jun-Il YOO
Clinics in Orthopedic Surgery 2025;17(1):62-70
Background:
This study aimed to compare the intraoperative stability and early clinical outcomes of 40-mm diameter dual mobility (DM)-total hip arthroplasty (THA) with 36-mm ceramic head (large head) THA in active elderly patients with hip fractures.
Methods:
A prospective randomized controlled trial was conducted from May 2022 to December 2022. Inclusion criteria were as follows: age ≥ 60 years, displaced femoral neck fracture, Koval grade 1 or 2, planned 54-mm acetabular component, and over 1-year follow-up. Intraoperative stability tests were performed on all patients (internal rotation at 45°, 60°, and 90° of hip fracture). Functional outcomes (Harris Hip Score and University of California, Los Angeles [UCLA] Score) were evaluated at 6 weeks and 3 months postoperatively. Gait analysis using artificial intelligence (AI) techniques was conducted at 3 months postoperatively.
Results:
The study included 36 DM-THA patients (mean age, 69.6 ± 2.2 years; 44% women) and 37 large head THA patients (mean age, 69.6 ± 1.2 years; 64% women). No statistically significant differences were observed in functional outcomes and hip range of motion between the 2 groups. However, there was a significant difference in the gait speed and stance-swing phase of the large head THA group and the DM-THA group: the DM-THA group demonstrated superior gait speed (2.85 ± 0.83 kph vs. 2.04 ± 1.04 kph, p = 0.003) and higher stance phase ratios (operated side: 63.57% ± 3.82% vs. 48.19% ± 5.50%, p < 0.001; opposite side: 62.77% ± 2.27% vs. 49.93% ± 6.94%, p < 0.001). In the stability test at 90° of hip flexion, the DM-THA group had a measurement of 48.40° ± 5.17°, while the large head THA group had a measurement of 30.94° ± 2.98° (p = 0.012). Despite the lack of statistical significance, the intraoperative stability test showed the dislocation angle was notably different between the groups in the hip flexion position of 60° (51.60° ± 6.09° in the DM-THA group and 40.00° ± 2.80° in the large head THA group, p = 0.072).
Conclusions
Superior results were observed in the intraoperative stability test and early recovery of gait after DM-THA compared to large head THA. We believe that DM-THA can be a useful surgical option for THA in elderly patients with hip fractures.
5.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
6.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
7.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
8.Mock communities to assess biases in nextgeneration sequencing of bacterial species representation
Younjee HWANG ; Ju Yeong KIM ; Se Il KIM ; Ji Yeon SUNG ; Hye Su MOON ; Tai-Soon YONG ; Ki Ho HONG ; Hyukmin LEE ; Dongeun YONG
Annals of Clinical Microbiology 2025;28(1):3-
Background:
The 16S rRNA-targeted next-generation sequencing (NGS) has been widely used as the primary tool for microbiome analysis. However, whether the sequenced microbial diversity absolutely represents the original sample composition remains unclear. This study aimed to evaluate whether 16S rRNA gene-targeted NGS accurately captures bacterial community composition.
Methods:
Mock communities were constructed using equal amounts of DNA from 18 bacterial strains in three formats: genomic DNA, recombinant plasmids, and polymerase chain reaction (PCR) templates. The V3V4 region of the 16S rRNA gene was amplified and sequenced using the Illumina MiSeq.
Results:
Data regression analysis revealed that the recombinant plasmid produced more accurate and precise correlation curve than that by the gDNA and PCR products, with a slope closest to 1 (1.0082) and the highest R² value (0.9975). Despite the same input amount of bacterial DNA, the NGS read distribution varied across all three mock communities. Using multiple regression analysis, we found that the guanine-cytosine (GC) content of the V3V4 region, 16S rRNA gene, size of gDNA, and copy number of 16S rRNA were significantly associated with the NGS output of each bacterial species.
Conclusion
This study demonstrated that recombinant plasmids are the preferred option for quality control and that NGS output is biased owing to certain bacterial characteristics, such as %GC content, gDNA size, and 16S rRNA gene copy number. Further research is required to develop a system that compensates for NGS process biases using mock communities.
9.Comparing Stability, Gait, and Functional Score after 40-mm Dual-Mobility Hip Arthroplasty to 36-mm Head Hip Arthroplasty in Elderly Hip Fracture Patients
Yonghan CHA ; Sang-Yeob LEE ; Ji-Ho BAE ; Yang Jae KANG ; Ji-Hoon BAEK ; Joon Soon KANG ; Chan Ho PARK ; Shinjune KIM ; Jun-Il YOO
Clinics in Orthopedic Surgery 2025;17(1):62-70
Background:
This study aimed to compare the intraoperative stability and early clinical outcomes of 40-mm diameter dual mobility (DM)-total hip arthroplasty (THA) with 36-mm ceramic head (large head) THA in active elderly patients with hip fractures.
Methods:
A prospective randomized controlled trial was conducted from May 2022 to December 2022. Inclusion criteria were as follows: age ≥ 60 years, displaced femoral neck fracture, Koval grade 1 or 2, planned 54-mm acetabular component, and over 1-year follow-up. Intraoperative stability tests were performed on all patients (internal rotation at 45°, 60°, and 90° of hip fracture). Functional outcomes (Harris Hip Score and University of California, Los Angeles [UCLA] Score) were evaluated at 6 weeks and 3 months postoperatively. Gait analysis using artificial intelligence (AI) techniques was conducted at 3 months postoperatively.
Results:
The study included 36 DM-THA patients (mean age, 69.6 ± 2.2 years; 44% women) and 37 large head THA patients (mean age, 69.6 ± 1.2 years; 64% women). No statistically significant differences were observed in functional outcomes and hip range of motion between the 2 groups. However, there was a significant difference in the gait speed and stance-swing phase of the large head THA group and the DM-THA group: the DM-THA group demonstrated superior gait speed (2.85 ± 0.83 kph vs. 2.04 ± 1.04 kph, p = 0.003) and higher stance phase ratios (operated side: 63.57% ± 3.82% vs. 48.19% ± 5.50%, p < 0.001; opposite side: 62.77% ± 2.27% vs. 49.93% ± 6.94%, p < 0.001). In the stability test at 90° of hip flexion, the DM-THA group had a measurement of 48.40° ± 5.17°, while the large head THA group had a measurement of 30.94° ± 2.98° (p = 0.012). Despite the lack of statistical significance, the intraoperative stability test showed the dislocation angle was notably different between the groups in the hip flexion position of 60° (51.60° ± 6.09° in the DM-THA group and 40.00° ± 2.80° in the large head THA group, p = 0.072).
Conclusions
Superior results were observed in the intraoperative stability test and early recovery of gait after DM-THA compared to large head THA. We believe that DM-THA can be a useful surgical option for THA in elderly patients with hip fractures.
10.Clinical Validation of the Unparalleled Sensitivity of the Novel Allele-Discriminating Priming System Technology–Based EGFR Mutation Assay in Patients with Operable Non–Small Cell Lung Cancer
Il-Hyun PARK ; Dae-Soon SON ; Yoon-La CHOI ; Ji-Hyeon CHOI ; Ji-Eun PARK ; Yeong Jeong JEON ; Minseob CHO ; Hong Kwan KIM ; Yong Soo CHOI ; Young Mog SHIM ; Jung Hee KANG ; Suzy PARK ; Jinseon LEE ; Sung-Hyun KIM ; Byung-Chul LEE ; Jhingook KIM
Cancer Research and Treatment 2024;56(1):81-91
Purpose:
Recently, we developed allele-discriminating priming system (ADPS) technology. This method increases the sensitivity of conventional quantitative polymerase chain reaction up to 100 folds, with limit of detection, 0.01%, with reinforced specificity. This prospective study aimed to develop and validate the accuracy of ADPS epidermal growth factor receptor (EGFR) Mutation Test Kit using clinical specimens.
Materials and Methods:
In total 189 formalin-fixed paraffin-embedded tumor tissues resected from patients with non–small cell lung cancer were used to perform a comparative evaluation of the ADPS EGFR Mutation Test Kit versus the cobas EGFR Mutation Test v2, which is the current gold standard. When the two methods had inconsistent results, next-generation sequencing–based CancerSCAN was utilized as a referee.
Results:
The overall agreement of the two methods was 97.4% (93.9%-99.1%); the positive percent agreement, 95.0% (88.7%-98.4%); and the negative percent agreement, 100.0% (95.9%-100.0%). EGFR mutations were detected at a frequency of 50.3% using the ADPS EGFR Mutation Test Kit and 52.9% using the cobas EGFR Mutation Test v2. There were 10 discrepant mutation calls between the two methods. CancerSCAN reproduced eight ADPS results. In two cases, mutant allele fraction was ultra-low at 0.02% and 0.06%, which are significantly below the limit of detection of the cobas assay and CancerSCAN. Based on the EGFR genotyping by ADPS, the treatment options could be switched in five patients.
Conclusion
The highly sensitive and specific ADPS EGFR Mutation Test Kit would be useful in detecting the patients who have lung cancer with EGFR mutation, and can benefit from the EGFR targeted therapy.

Result Analysis
Print
Save
E-mail