1.A study on oral sensory function in the implant-supported prosthesis wearers.
Kyoung Soo JANG ; Yung Soo KIM
The Journal of Korean Academy of Prosthodontics 1991;29(1):215-232
No abstract available.
Prostheses and Implants*
;
Sensation*
2.Experimental studies on the tissue response of HA coated, TPS and Al2O3 artificial root implants.
The Journal of Korean Academy of Prosthodontics 1991;29(2):267-284
No abstract available.
3.A study on the osseointegrated prosthesis using three dimensional finite element method.
The Journal of Korean Academy of Prosthodontics 1991;29(1):167-212
No abstract available.
Prostheses and Implants*
4.An electrochemical study on the corrosion resistance of the various implant metals.
The Journal of Korean Academy of Prosthodontics 1993;31(3):423-446
No abstract available.
Corrosion*
;
Metals*
6.A case of distal type of renal tubular acidosis in a neonate.
Sung Sub SHIM ; Young Joon KIM ; Jae Hong PARK ; Soo Yung KIM ; Chan Yung KIM
Journal of the Korean Pediatric Society 1992;35(7):1014-1018
No abstract available.
Acidosis, Renal Tubular*
;
Humans
;
Infant, Newborn*
7.A comparative study on subgingival microbial composition between natural teeth and osseointegrated implants.
Yong Sik LIM ; Yung Soo KIM ; Chang Whe KIM
The Journal of Korean Academy of Prosthodontics 1993;31(3):411-422
No abstract available.
Tooth*
8.ANALYSIS OF THE FIT IN THE IMPLANT PROSTHESIS USING LASER DISPLACEMENT METER AND THREE-DIMENSIONAL FINITE ELEMENT METHOD.
Ho Beom KWON ; Yung Soo KIM ; Chang Whe KIM
The Journal of Korean Academy of Prosthodontics 2001;39(6):611-624
A precise fit of the implant prosthesis is one of the most important factors in preventing mechanical complications. To analyze the degree of the misfit of implant prosthesis, a modal testing experiment was accomplished. And to interpret the modal testing analysis mathematically, three-dimensional finite element models were established. In the experimental modal testing analysis, with a laser displacement meter, FFT analyzer, impact hammer, etc., natural frequencies of the models with various degree of prosthesis fit were determined after the frequency response function were calculated. In the finite element analysis, the natural frequencies and mode shapes of the models which simulated those of experimental modal testing were computed. The results were as follows : 1. Natural frequencies of the prosthesis-abutment were related to the contact state between components. 2. In the modal testing experiment, the natural frequencies increased from 50micrometer to 200micrometer gap and reached a plateau. 3. In the finite element analysis, the natural frequencies decreased gradually according to the increase of the gap size. 4. In the finite element analysis, the mode shapes of model 1 with misfitting prosthesis showed different patterns from those without misfitting prosthesis. 5. The devices including a laser displacement meter used in this study were useful for measuring the natural frequencies of an implant prosthesis which had various degrees of fit.
Finite Element Analysis
;
Prostheses and Implants*
9.EFFECTS OF CHOPPED GLASS FIBER ON THE STRENGTH OF HEAT-CURED PMMA RESIN.
Sang Il LEE ; Chang Whe KIM ; Yung Soo KIM
The Journal of Korean Academy of Prosthodontics 2001;39(6):589-598
The fracture of acrylic resin dentures remains an unsolved problem. Therefore, many investigations have been performed and various approaches to strengthening acrylic resin, for example, the reinforcement of heat-cured PMMA resin using glass fibers, have been suggested over the years. The aim of the present study was to investigate the effect of short glass fibers treated with silane coupling agent on the transverse strength of heat-polymerized PMMA denture base resin. To avoid fiber bunching and achieve even fiber distribution, glass fiber bundles were mixed with PMMA powder in conventional mixer whose blade was modified to be blunt. Composite of glass fiber (11micrometer diameter, 3mm & 6mm length, silane treated) and PMMA resin was made. Transverse strength and Young's modulus were estimated. Glass fibers were incorporated with 1%, 3%, 6% and 9% by weight. Plasticity and workability of dough was evaluated. Fracture surface of specimens was investigated by SEM. The results of this study were as follows 1. 6% and 9% incorporation of 3mm glass fibers in the PMMA resin enhanced the transverse strength of the test specimens (p<0.05). 2. 6% incorporation of 6mm glass fibers in the PMMA resin increased transverse strength, but 9% incorporation of it decreased transverse strength (p<0.05). 3. When more than 3% of 3mm glass fibers and more than 6% of 6mm glass fibers were incorporated. Young's modulus increased significantly (p<0.05). 4. Workability decreased gradually as the percentage of the fibers increased. 5. Workability decreased gradually as the length of the fibers increased. 6. In SEM and LM, there was no bunching of fibers and no shortening of fibers.
Denture Bases
;
Dentures
;
Elastic Modulus
;
Glass*
;
Plastics
;
Polymethyl Methacrylate*
10.STRAIN AND TEMPERATURE CHANGES DURING THE POLYMERIZATION OF AUTOPOLYMERIZING ACRYLIC RESINS.
Hyung Jun AHN ; Chang Whe KIM ; Yung Soo KIM
The Journal of Korean Academy of Prosthodontics 2001;39(6):709-734
The aims of this experiment were to investigate the strain and temperature changes simultaneously within autopolymerizing acrylic resin specimens. A computerized data acquisition system with an electrical resistance strain gauge and a thermocouple was used over time periods up to 180 minutes. The overall strain kinetics, the effects of stress relaxation and additional heat supply during the polymerization were evaluated. Stone mold replicas with an inner butt-joint rectangular cavity (40.0x25.0mm, 5.0mm in depth) were duplicated from a brass master mold. A strain gauge (AE-11-S50N-120-EC, CAS Inc., Korea) and a thermocouple were installed within the cavity, which had been connected to a personal computer and a precision signal conditioning amplifier (DA 1600 Dynamic Strain Amplifier, CAS Inc., Korea) so that real-time recordings of both polymerization-induced strain and temperature changes were performed. After each of fresh resin mixture was poured into the mold replica, data recording was done up to 180 minutes with three-second interval. Each of two poly (methyl methacrylate) products (Duralay, Vertex) and a vinyl ethyl methacrylate product (Snap) was examined repeatedly ten times. Additionally, removal procedures were done after 15, 30 and 60 minutes from the start of mixing to evaluate the effect of stress relaxation after deflasking. Six specimens for each of nine conditions were examined. After removal from the mold, the specimen continued benchcuring up to 180 minutes. Using a waterbath (Hanau Junior Curing Unit, Model No.76-0, Teledyne Hanau, New York, U.S.A.) with its temperature control maintained at 50degrees C, heat-soaking procedures with two different durations (15 and 45 minutes) were done to evaluate the effect of additional heat supply on the strain and temperature changes within the specimen during the polymerization. Five specimens for each of six conditions were examined. Within the parameters of this study the following results were drawn : 1. The mean shrinkage strains reached -3095mu epsilon, -1796mu epsilon and -2959mu epsilon for Duralay, Snap and Vertex, respectively. The mean maximum temperature rise reached 56.7degrees C, 41.3degrees C and 56.1degrees C for Duralay, Snap, and Vertex, respectively. A vinyl ethyl methacrylate product (Snap) showed significantly less polymerization shrinkage strain (p<0.01) and significantly lower maximum temperature rise (p<0.01) than the other two poly (methyl methacrylate) products (Duralay, Vertex). 2. Mean maximum shrinkage rate for each resin was calculated to ?31.8mu epsilon/sec, -15.9mu epsilon/sec and ?31.8mu epsilon/sec for Duralay, Snap and Vertex, respectively. Snap showed significantly lower maximum shrinkage rate than Duralay and Vertex (p<0.01). 3. from the second experiment, some expansion was observed immediately after removal of specimen from the mold, and the amount of expansion increased as the removal time was delayed. For each removal time, Snap showed significantly less strain changes than the other two poly (methyl methacrylate) products (p<0.05). 4. During the external heat supply for the resins, higher maximum temperature rises were found. Meanwhile, the maximum shrinkage rates were not different from those of room temperature polymerizations. 5. From the third experiment, the external heat supply for the resins during polymerization could temporarily decrease or even reverse shrinkage strains of each material. But, shrinkage re-occurred in the linear nature after completion of heat supply. 6. Linear thermal expansion coefficients obtained from the end of heat supply continuing for an additional 5 minutes, showed that Snap exhibited significantly lower values than the other two poly (methyl methacrylate) products (p<0.01). Moreover, little difference was found between the mean linear thermal expansion coefficients obtained from two different heating durations (p>0.05).
Acrylic Resins*
;
Electric Impedance
;
Fungi
;
Heating
;
Hot Temperature
;
Kinetics
;
Microcomputers
;
Polymerization*
;
Polymers*
;
Relaxation