1.Research, design and application of model NSE-1 neck muscle training machine for pilots.
Haiping CHENG ; Zhijie WANG ; Songyang LIU ; Yi YANG ; Guang ZHAO ; Hong CONG ; Xueping HAN ; Min LIU ; Mengsun YU
Journal of Biomedical Engineering 2011;28(2):387-391
Pain in the cervical region of air force pilots, who are exposed to high G-forces, is a specifically occupational health problem. To minimize neck problems, the cervical muscles need specific strength exercise. It is important that the training for the neck must be carried out with optimal resistance in exercises. The model NSE-1 neck training machine for pilots was designed for neck strengthening exercises under safe and effective conditions. In order to realize the functions of changeable velocity and resistant (CVR) training and neck isometric contractive exercises, the techniques of adaptive hydraulics, sensor, optic and auditory biological feedback, and signal processing were applied to this machine. The training system mainly consists of mechanical parts (including the chair of flexion and extension, the chair of right and left lateral flexion, the components of hydraulics and torque transformer, etc.), and the software of signal processing and biological feedback. Eleven volunteers were selected for the experiments of neck isometric contractive exercises, three times a week for 6 weeks, where CVR training (flexion, extension, right, left lateral flexion) one time a week. The increase in relative strength of the neck (flexion, extension, left and right lateral flexion) was 70.8%, 83.7%, 78.6% and 75.2%, respectively after training. Results show that the strength of the neck can be increased safely, effectively and rapidly with NSE-1 neck training machine to perform neck training.
Aerospace Medicine
;
Aircraft
;
Equipment Design
;
Exercise
;
physiology
;
Humans
;
Military Personnel
;
Neck Muscles
;
injuries
;
physiology
;
Neck Pain
;
etiology
;
prevention & control
;
Physical Education and Training
;
Posture
2.Role of post-translational modification of basic leucine zipper transcription factors in response to abiotic stresses in plants.
Ying LI ; Weidi ZHAO ; Jinghua YANG ; Jiaqi LI ; Songyang HAN ; Yuekun REN ; Changhong GUO
Chinese Journal of Biotechnology 2024;40(1):53-62
Abiotic stresses substantially affect the growth and development of plants. Plants have evolved multiple strategies to cope with the environmental stresses, among which transcription factors play an important role in regulating the tolerance to abiotic stresses. Basic leucine zipper transcription factors (bZIP) are one of the largest gene families. The stability and activity of bZIP transcription factors could be regulated by different post-translational modifications (PTMs) in response to various intracellular or extracellular stresses. This paper introduces the structural feature and classification of bZIP transcription factors, followed by summarizing the PTMs of bZIP transcription factors, such as phosphorylation, ubiquitination and small ubiquitin-like modifier (SUMO) modification, in response to abiotic stresses. In addition, future perspectives were prospected, which may facilitate cultivating excellent stress-resistant crop varieties by regulating the PTMs of bZIP transcription factors.
Basic-Leucine Zipper Transcription Factors/genetics*
;
Protein Processing, Post-Translational
;
Phosphorylation
;
Transcription Factors/genetics*
;
Stress, Physiological/genetics*