1.Application of Roy's cognitive adaptation process theory in pediatric nursing courses
Yunhan ZHANG ; Songwei JIA ; Yu LIU
Chinese Journal of Modern Nursing 2019;25(5):647-649
Objective? To explore the effects of Roy's cognitive adaptation process theory on pediatric nursing courses. Methods? Totally 119 three-year specialized nursing students who were admitted in 2016 in Nanyang Medical College were selected as the treatment group by convenient sampling, while another 114 specialized nursing students admitted in 2015 were selected as the control group. Nursing students in the control group were taught using the conventional method, whereas nursing students in the treatment group were involved into four-step teaching activities according to Roy's cognitive adaptation process. The Learning Attitude Questionnaire for College Nursing Students and the Critical Thinking Rating Scale were used to evaluate the teaching effects at the end of these courses. Results? At the end of these courses, the treatment group scored higher than the control group on the whole and in different dimensions of the Learning Attitude Questionnaire (P<0.05). The treatment group also scored higher than the control group on the whole and in different dimensions of the Critical Thinking Rating Scale (P< 0.05). Conclusions? Multiple teaching methods based on Roy's cognitive adaptation process, when used in pediatric nursing courses, can enhance nursing students' learning attitude and critical thinking, which is worth promoting in other nursing courses.
2.Mitigating metal artifacts in cone-beam CT images through deep learning techniques
Linghui JIA ; Honglei LIN ; Songwei ZHENG ; Xiujiao LIN ; Dong ZHANG ; Hao YU
Chinese Journal of Stomatology 2024;59(1):71-79
Objective:To develop and evaluate metal artifact removal systems (MARSs) based on deep learning to assess their effectiveness in removing artifacts caused by different thicknesses of metals in cone-beam CT (CBCT) images.Methods:A full-mouth standard model (60 mm×75 mm×110 mm) was three-dimensional (3D) printed using photosensitive resin. The model included a removable and replaceable target tooth position where cobalt-chromium alloy crowns with varying thicknesses were inserted to generate matched CBCT images. The artifacts resulting from cobalt-chromium alloys with different thicknesses were evaluated using the structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR). CNN-MARS and U-net-MARS were developed using a convolutional neural network and U-net architecture, respectively. The effectiveness of both MARSs were assessed through visualization and by measuring SSIM and PSNR values. The SSIM and PSNR values were statistically analyzed using one-way analysis of variance (α=0.05).Results:Significant differences were observed in the range of artifacts produced by different thicknesses of cobalt-chromium alloys (all P<0.05), with 1 mm resulting in the least artifacts. The SSIM values for specimens with thicknesses of 1.0 mm, 1.5 mm, and 2.0 mm were 0.916±0.019, 0.873±0.010, and 0.833±0.010, respectively ( F=447.89, P<0.001). The corresponding PSNR values were 20.834±1.176, 17.002±0.427, and 14.673±0.429, respectively ( F=796.51, P<0.001). After applying CNN-MARS and U-net-MARS to artifact removal, the SSIM and PSNR values significantly increased for images with the same thickness of metal (both P<0.05). When using the CNN-MARS for artifact removal, the SSIM values for 1.0, 1.5 and 2.0 mm were 0.938±0.023, 0.930±0.029, and 0.928±0.020 ( F=2.22, P=0.112), while the PSNR values were 30.938±1.495, 30.578±2.154 and 30.553±2.355 ( F=0.54, P=0.585). When using the U-net-MARS for artifact removal, the SSIM values for 1.0, 1.5 and 2.0 mm were 0.930±0.024, 0.932±0.017 and 0.930±0.012 ( F=0.24, P=0.788), and the PSNR values were 30.291±0.934, 30.351±1.002 and 30.271±1.143 ( F=0.07, P=0.929). No significant differences were found in SSIM and PSNR values after artifact removal using CNN-MARS and U-net-MARS for different thicknesses of cobalt-chromium alloys (all P>0.05). Visualization demonstrated a high degree of similarity between the images before and after artifact removal using both MARSs. However, CNN-MARS displayed clearer metal edges and preserved more tissue details when compared with U-net-MARS. Conclusions:Both the CNN-MARS and U-net-MARS models developed in this study effectively remove the metal artifacts and enhance the image quality. CNN-MARS exhibited an advantage in restoring tissue structure information around the artifacts compared to U-net-MARS.
3.Mitigating metal artifacts from cobalt-chromium alloy crowns in cone-beam CT images through deep learning techniques
Linghui JIA ; Honglei LIN ; Songwei ZHENG ; Xiujiao LIN ; Dong ZHANG ; Hao YU
Chinese Journal of Stomatology 2024;59(1):71-79
Objective:To develop and evaluate metal artifact removal systems (MARS) based on deep learning to assess their effectiveness in removing artifacts caused by different thicknesses of metals in cone-beam CT (CBCT) images.Methods:A full-mouth standard model (60 mm×75 mm×110 mm) was three-dimensional (3D) printed using photosensitive resin. The model included a removable and replaceable target tooth position where cobalt-chromium alloy crowns with varying thicknesses were inserted to generate matched CBCT images. The artifacts resulting from cobalt-chromium alloys with different thicknesses were evaluated using the structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR). CNN-MARS and U-net-MARS were developed using a convolutional neural network and U-net architecture, respectively. The effectiveness of both MARSs were assessed through visualization and by measuring SSIM and PSNR values. The SSIM and PSNR values were statistically analyzed using one-way analysis of variance (α=0.05).Results:Significant differences were observed in the range of artifacts produced by different thicknesses of cobalt-chromium alloys (all P<0.05), with 1 mm resulting in the least artifacts. The SSIM values for specimens with thicknesses of 1.0, 1.5, and 2.0 mm were 0.916±0.019, 0.873±0.010, and 0.833±0.010, respectively ( F=447.89, P<0.001). The corresponding PSNR values were 20.834±1.176, 17.002±0.427, and 14.673±0.429, respectively ( F=796.51, P<0.001). After applying CNN-MARS and U-net-MARS to artifact removal, the SSIM and PSNR values significantly increased for images with the same thickness of metal (both P<0.05). When using the CNN-MARS for artifact removal, the SSIM values for 1.0, 1.5 and 2.0 mm were 0.938±0.023, 0.930±0.029, and 0.928±0.020 ( F=2.22, P=0.112), while the PSNR values were 30.938±1.495, 30.578±2.154 and 30.553±2.355 ( F=0.54, P=0.585). When using the U-net-MARS for artifact removal, the SSIM values for 1.0, 1.5 and 2.0 mm were 0.930±0.024, 0.932±0.017 and 0.930±0.012 ( F=0.24, P=0.788), and the PSNR values were 30.291±0.934, 30.351±1.002 and 30.271±1.143 ( F=0.07, P=0.929). No significant differences were found in SSIM and PSNR values after artifact removal using CNN-MARS and U-net-MARS for different thicknesses of cobalt-chromium alloys (all P>0.05). Visualization demonstrated a high degree of similarity between the images before and after artifact removal using both MARS. However, CNN-MARS displayed clearer metal edges and preserved more tissue details when compared with U-net-MARS. Conclusions:Both the CNN-MARS and U-net-MARS models developed in this study effectively remove the metal artifacts and enhance the image quality. CNN-MARS exhibited an advantage in restoring tissue structure information around the artifacts compared to U-net-MARS.