1.Mechanisms of Antidepressant Effect of Zhizi Houpotang and Its Herbal Pairs Based on NLRP3/GSDMD Signaling Pathway
Chang CHEN ; Ziwen GUO ; Tingyu SONG ; Yan WANG ; Baomei XIA ; Weiwei TAO
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):72-80
ObjectiveTaking classical herbal pair compatibility research as the entry point, this study aimed to deeply investigate the material basis and compatibility rules underlying the antidepressant effects of the traditional Chinese medicine (TCM) formula Zhizi Houpotang, and to elucidate its antidepressant mechanism, with a particular focus on its regulation of neuroinflammatory responses mediated by the NOD-like receptor protein 3 (NLRP3)/gasdermin D (GSDMD) signaling pathway and the consequent improvement of neuronal synaptic plasticity. MethodsC57BL/6J mice were randomly divided into a blank control group, a chronic unpredictable mild stress (CUMS) depression model group, a Zhizi Houpotang full-formula group (6 g·kg-1·d-1), a Magnoliae Officinalis Cortex (MOC)-Aurantii Fructus Immaturus (AFI) herbal pair group (4.2 g·kg-1·d-1), a Gardeniae Fructus (GF)-MOC herbal pair group (4.2 g·kg-1·d-1), a GF-AFI herbal pair group (3.6 g·kg-1·d-1), and a positive drug group (fluoxetine, 12 mg·kg-1·d-1). Depressive-like behaviors in mice were evaluated using behavioral tests. Immunofluorescence staining was used to label and quantify the expression of the microglial marker ionized calcium-binding adaptor molecule 1 (Ibal) and the purinergic receptor P2X ligand-gated ion channel 7 (P2RX7) in the prefrontal cortex (PFC). Enzyme-linked immunosorbent assay (ELISA) was applied to detect the levels of inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) in serum and PFC tissues. Western blot was employed to determine the expression of pannexin 1 (Panx1), P2RX7, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), Caspase-1, GSDMD, postsynaptic density protein 95 (PSD95), and the presynaptic protein Synapsin 1 in PFC tissues. Golgi staining was used to assess dendritic spine density of neurons in the PFC. ResultsCompared with the blank control group, the depression model group exhibited significant depressive-like behaviors. In addition, the immunofluorescence areas of Ibal and P2RX7 in the PFC were significantly increased (P<0.01), the levels of IL-1β and IL-18 in serum and the PFC were significantly elevated (P<0.01), and the protein expression levels of Panx1, P2RX7, NLRP3, ASC, Caspase-1, and GSDMD in the PFC were significantly upregulated (P<0.01). In contrast, the protein expression levels of PSD95 and Synapsin 1 were significantly downregulated (P<0.01), and neuronal dendritic spine density was significantly reduced (P<0.01). Compared with the model group, the Zhizi Houpotang full-formula group and the GF-MOC herbal pair group showed significant improvement in all the above indicators (P<0.01). The GF-AFI herbal pair group improved all the above indicators except P2RX7, Caspase-1, GSDMD, and PSD95 (P<0.05, P<0.01). In contrast, the MOC-AFI herbal pair group showed no statistically significant improvement in any of the above indicators compared with the model group. ConclusionZhizi Houpotang and its key herbal pair, GF-MOC, can effectively ameliorate CUMS-induced depressive-like behaviors in mice. Its core antidepressant mechanism may involve inhibition of P2RX7/Panx1 signaling, thereby blocking the NLRP3/GSDMD-mediated pyroptosis pathway and significantly reducing the release of inflammatory cytokines IL-1β and IL-18. Simultaneously, it upregulates the expression of synapse-related proteins PSD95 and Synapsin 1 and increases dendritic spine density, promoting the recovery of synaptic plasticity. These results suggest that GF plays a key role in the antidepressant effects of this formula, and that the compatibility of GF with MOC may represent the principal herbal pair combination responsible for its core therapeutic action.
2.UPLC-Q-TOF-MS Reveals Mechanisms of Modified Qing'e Formula in Delaying Skin Photoaging and Regulating Circadian Rhythm
Wanyu YANG ; Xiujun ZHANG ; Yan WANG ; Chunjing SONG ; Haoming MA ; Lifeng WANG ; Nan LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):88-97
ObjectiveTo reveal the active substances and mechanisms of modified Qing'e formula (MQEF) in delaying skin photoaging by ultra-performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF-MS),network pharmacology, and cell experiments. MethodsUPLC-Q-TOF-MS and a literature review were employed to analyze the transdermally absorbed components in mice after the topical application of MQEF. The potential targets of MQEF in treating skin photoaging were retrieved from databases.The compound-potential target network and protein-protein interaction network were constructed to screen the key components and core targets. A photoaging cell model was established by irradiating HaCaT cells with medium-wave ultraviolet B (UVB). The safe doses of bakuchiol (BAK) and salvianolic acid B (SAB) for treating HaCaT cells and the effects of BAK and SAB on the viability of cells exposed to UVB irradiation were determined by the cell counting kit-8 (CCK-8) method.The reactive oxygen species (ROS) fluorescent probe was used to measure the ROS production in the cells treated with BAK and SAB.The expression levels of genes related to oxidative stress,inflammation,collagen metabolism,and circadian rhythm clock were measured by Real-time PCR. ResultsA total of 24 transdermally absorbed components of MQEF were identified,which acted on 367 potential targets,and 417 targets related to skin photoaging were screened out,among which 47 common targets were predicted as the targets of MQEF in treating skin photoaging. MQEF exerted the anti-photoaging effect via key components such as BAK and SAB,which acted on core proteins such as serine/threonine kinase 1 (Akt1) and mitogen-activated protein kinase 3 (MAPK3) and intervened in core pathways such as the tumor necrosis factor (TNF) and phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathways.Compared with the model group,the administration of BAK and SAB increased the survival rate of HaCaT cells (P<0.01),down-regulated the mRNA levels of cyclooxygenase-2 (COX-2),interleukin-6 (IL-6),tumor necrosis factor-α (TNF-α),matrix metalloproteinase-1 (MMP-1),and matrix metalloproteinase-9 (MMP-9) (P<0.01),and up-regulated the mRNA levels of heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO-1) (P<0.05,P<0.01) in photoaged HaCaT cells.In addition,it eliminated excess ROS production induced by UVB and up-regulated the mRNA levels of brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) associated with circadian clock (P<0.05,P<0.01). ConclusionMQEF delays skin photoaging through the coordinated effects of various components,multiple targets,and diverse pathways.The key components BAK and SAB in MQEF exhibit anti-photoaging properties,which involve inhibiting oxidative stress,preventing collagen degradation,mitigating inflammation,and maintaining normal skin circadian rhythms by regulating clock gene expression.
3.Study on the effect of berberine combined with fluconazole on fluconazole-tolerant Candida albcians strains
Zecheng SONG ; Shanshan MA ; Qiaoling HU ; Hua ZHONG ; Yan WANG
Journal of Pharmaceutical Practice and Service 2025;43(2):87-91
Objective To investigate the combined effect of berberine (BBR) and fluconazole (FLC) on FLC-tolerant Candida albicans in vitro. Methods The sensitivity of 8 strains of Candida albicans to FLC was assessed by determining their minimal inhibitory concentration (MIC) using broth microdilution method. FLC-tolerant strains were screened from FLC-sensitive strains by disk diffusion assay. The effect of BBR combined with FLC on FLC-tolerant Candida albicans was investigated by disk diffusion assay. Results All eight strains of Candida albicans exhibited sensitivity to FLC, with minimal inhibitory concentration (MIC50) values below 0.5 μg/ml. Strains Y0109, 9821, 7879, 7654, and 9296 displayed colony growth in the inhibition zone after 48 h of constant temperature incubation, indicating FLC tolerance. When strains Y0109 and 9821 were subjected to a combination of BBR and FLC, the number of colonies within the inhibition zone decreased progressively with the increase of BBR concentration following a 48 h constant temperature culture. The inhibition zone became clear with the increasing of BBR concentration and increased with the increase of FLC loading, which showed a dose-dependent relationship. Conclusion The BBR combined with FLC demonstrated efficacy against FLC-tolerant strains.
4.Mechanism of Lijin manipulation regulating scar formation in skeletal muscle injury repair in rabbits
Kaiying LI ; Xiaoge WEI ; Fei SONG ; Nan YANG ; Zhenning ZHAO ; Yan WANG ; Jing MU ; Huisheng MA
Chinese Journal of Tissue Engineering Research 2025;29(8):1600-1608
BACKGROUND:Lijin manipulation can promote skeletal muscle repair and treat skeletal muscle injury.However,the formation of fibrosis and scar tissue hyperplasia are closely related to the quality of skeletal muscle repair.To study the regulatory effect of Lijin manipulation on the formation of fibrosis and scar tissue hyperplasia is helpful to explain the related mechanism of Lijin manipulation to improve the repair quality of skeletal muscle injury. OBJECTIVE:To explore the mechanism of Lijin manipulation to improve the repair quality of skeletal muscle injury in rabbits,thereby providing a scientific basis for clinical treatment. METHODS:Forty-five healthy adult Japanese large-ear white rabbits were randomly divided into blank group,model group and Lijin group,with 15 rats in each group.Gastrocnemius strike modeling was performed in both model group and Lijin group.The Lijin group began to intervene with tendon manipulation on the 3rd day after modeling,once a day,and 15 minutes at a time.Five animals in each group were killed on the 7th,14th and 21st days after modeling.The morphology and inflammatory cell count of gastrocnemius were observed by hematoxylin-eosin staining,the collagen fiber amount was observed by Masson staining,the expression of interleukin-6 and interleukin-10 in gastrocnemius was detected by ELISA.The protein and mRNA expressions of paired cassette gene 7,myogenic differentiation factor,myoblastogenin,alpha-actin,transforming growth factor beta 1,and type Ⅰ collagen were detected by western blot and RT-PCR,respectively,and the expression of type Ⅰ collagen protein was detected by immunohistochemistry. RESULTS AND CONCLUSION:Hematoxylin-eosin staining and Masson staining showed that compared with the model group,inflammatory cell infiltration and collagen fiber content decreased in the Lijin group(P<0.01),and the muscle fibers gradually healed.ELISA results showed that compared with the model group,the expression of interleukin-6 in the Lijin group continued to decrease(P<0.05),and the expression of interleukin-10 increased on the 7th day after modeling(P<0.05)and then showed a decreasing trend(P<0.05).Western blot and RT-PCR results showed that compared with the model group,the protein and mRNA expressions of paired cassette gene 7,myogenic differentiation factor,myoblastogenin in the Lijin group were significantly increased on the 14th day after modeling(P<0.05),but decreased on the 21st day(P<0.05);the protein and mRNA expressions of alpha-actin,transforming growth factor beta 1,and type Ⅰ collagen in the Lijin group were significantly decreased compared with those in the model group(P<0.05).Immunohistochemical results showed that the expression of type Ⅰ collagen in the Lijin group was significantly lower than that in the model group(P<0.05).To conclude,Lijin manipulation could improve the repair quality of skeletal muscle injury by inhibiting inflammation,promoting the proliferation and differentiation of muscle satellite cells,and reducing fibrosis.
5.Inhibitory effect of hydroxy safflower yellow A on neuronal pyroptosis after glucose-oxygen deprivation/reglucose-reoxygenation treatment
Zeqian WANG ; Yanzhe DUAN ; Yige WU ; Dong MA ; Jianjun HUANG ; Yuqing YAN ; Lijuan SONG
Chinese Journal of Tissue Engineering Research 2025;29(19):4044-4051
BACKGROUND:Hydroxy safflower yellow A has anti-ischemia,anti-oxidation,anti-thrombotic and anti-inflammatory effects.Whether it affects neuronal pyroptosis after glucose-oxygen deprivation/reglucose-reoxygenation is still unclear. OBJECTIVE:To investigate the protective effect of hydroxy safflower yellow A on neuronal pyroptosis and its mechanism. METHODS:HT22 cells in logarithmic growth phase were randomly divided into five groups:normal group,model group,hydroxy safflower yellow A group,colivelin group,and colivelin+hydroxy safflower yellow A group.HT22 cells were treated with glucose-oxygen deprivation/reglucose-reoxygenation to establish neuronal pyroptosis model,and then treated with STAT3 agonist Colivelin and hydroxy safflower yellow A.JC-1 probe was employed to assess changes in mitochondrial membrane potential.Reactive oxygen species kit was used to determine the content of reactive oxygen species in cells.GSDMD/TUNEL staining was conducted to observe cell pyroptosis.Immunofluorescence analysis was performed to detect STAT3 and GSDMD protein expression.RT-PCR was utilized for assessing mRNA expression levels of STAT3,NLRP3,and Caspase-1.Western blot assay was utilized to measure the protein expression levels of p-STAT3,NLRP3,GSDMD,Cleaved-caspase-1,and interleukin-1β. RESULTS AND CONCLUSION:(1)Compared with the normal group,the number of pyroptotic cells increased in HT22 cells in the model group along with a significant increase in protein expression levels of p-STAT3,NLRP3,Cleaved-caspase-1,GSDMD,and interleukin-1β.Compared with the model group,the number of pyroptotic cells reduced,and the expression of pyroptosis-related proteins significantly decreased in the hydroxy safflower yellow A group.(2)In comparison with the model group,pyroptosis worsened in the colivelin group where mitochondrial membrane potential decreased along with elevated reactive oxygen species content and increased mRNA expression levels of STAT3,NLRP3,and Caspase-1,as well as increased protein expression levels of p-STAT3,NLRP3,GSDMD,Cleaved-caspase-1,and interleukin-1β.Compared with the Colivelin group,above indexes were improved in the colivelin+hydroxy safflower yellow A group.These results suggest that hydroxy safflower yellow A plays a neuroprotective role through STAT3 signaling pathway to inhibit HT22 pyroptosis after glucose-oxygen deprivation/reglucose-reoxygenation treatment.
6.Changes and Trends in the microbiological-related standards in the Chinese Pharmacopoeia 2025 Edition
FAN Yiling ; ZHU Ran ; YANG Yan ; JIANG Bo ; SONG Minghui ; WANG Jing ; LI Qiongqiong ; LI Gaomin ; WANG Shujuan ; SHAO Hong ; MA Shihong ; CAO Xiaoyun ; HU Changqin ; MA Shuangcheng, ; YANG Meicheng
Drug Standards of China 2025;26(1):093-098
Objective: To systematically analyze the revisions content and technological development trends of microbiological standards in the Chinese Pharmacopoeia (ChP) 2025 Edition, and explore its novel requirements in risk-based pharmaceutical product lifecycle management.
Methods: A comprehensive review was conducted on 26 microbiological-related standards to summarize the revision directions and scientific implications from perspectives including the revision overview, international harmonization of microbiological standards, risk-based quality management system, and novel tools and methods with Chinese characteristics.
Results: The ChP 2025 edition demonstrates three prominent features in microbiological-related standards: enhanced international harmonization, introduced emerging molecular biological technologies, and established a risk-based microbiological quality control system.
Conclusion: The new edition of the Pharmacopoeia has systematically constructed a microbiological standard system, which significantly improves the scientificity, standardization and applicability of the standards, providing a crucial support for advancing the microbiological quality control in pharmaceutical industries of China.
7.Research on cardiometabolic risk factors of workers in new forms of employment
Siyuan WANG ; Xiaoshun WANG ; Rui GUAN ; Hong YU ; Xin SONG ; Binshuo HU ; Zhihui WANG ; Xiaowen DING ; Dongsheng NIU ; Tenglong YAN ; Huadong XU
China Occupational Medicine 2025;52(2):150-154
Objective To analyze the prevalence status of cardiometabolic risk factor (CMRF) and its aggregation among workers engaged in new forms of employment. Methods A total of 5 429 new employment workers (including couriers, online food delivery workers, and ride hailing drivers) who underwent health medical examinations at a tertiary hospital in Beijing City were selected as the research subjects using the judgment sampling method. Data on waist circumference, blood pressure, blood glucose, and blood lipid levels were collected to analyze their CMRF [central obesity, elevated blood pressure, elevated blood glucose, elevated triglycerides, and reduced high-density lipoprotein cholesterol (HDL-C)] and their aggregation (with ≥ 2 of the above 5 risk factors) status. Results The detection rates of central obesity, elevated blood pressure, elevated blood glucose, elevated triglycerides, and reduced HDL-C were 61.2%, 38.2%, 29.5%, 40.9% and 22.6%, respectively. The detection rates of CMRF aggregation was 57.8%. The result of multivariable logistic regression analysis showed that male, age ≥45 years, smoking, overweight, and obesity were risk factors for CMRF aggregation (all P<0.05). Conclusion The detection rate of CMRF and its aggregation among workers with new forms of employment in Beijing City is relatively high. Targeted prevention and control efforts should be strengthened for high-risk populations, especially males, workers aged ≥45 years, smokers, and those who are overweight or obese.
8.Elevated Serum Amyloid A2 and A4 in Patients With Guillain–Barré Syndrome
Xiaoying YAO ; Baojun QIAO ; Fangzhen SHAN ; Qingqing ZHANG ; Yan SONG ; Jin SONG ; Yuzhong WANG
Journal of Clinical Neurology 2025;21(3):213-219
Background:
and Purpose Guillain–Barré syndrome (GBS) is an autoimmune-mediated disorder characterized by demyelinating or axonal injury of the peripheral nerve. Our aim is to determine whether serum amyloid A (SAA) is a biomarker of demyelinating injury and disease severity in patients with GBS.
Methods:
This study retrospectively enrolled 40 patients with either the demyelinating or axonal GBS and sex- and age-matched controls with other neurological diseases as well as healthy subjects. The demographic and clinical features at entry were collected. The serum levels of the SAA isoforms SAA1, SAA2, and SAA4 were determined in the patients with GBS and the controls using the enzyme-linked immunosorbent assay and analyzed for the associations between levels of different SAA isoforms and the clinical features of the patients.
Results:
The levels of SAA2 and SAA4 were significantly higher in patients with GBS than in both the other neurological disease controls and the healthy subjects (p<0.05 for all). The level of SAA1 did not differ between patients with GBS and the controls. The level of SAA2 was considerably higher in GBS patients with antecedent infection than in those without infection (p=0.020). The levels of different SAA isoforms were not associated with the disease severity or other clinical features of patients with GBS (p>0.05 for all).
Conclusions
Increased levels of SAA2 and SAA4 may only represent the acute inflammatory status and so cannot be utilized as biomarkers of the disease severity or demyelinating injury in patients with GBS.
9.Study on the modeling method of general model of Yaobitong capsule intermediates quality analysis based on near infrared spectroscopy
Le-ting SI ; Xin ZHANG ; Yong-chao ZHANG ; Jiang-yan ZHANG ; Jun WANG ; Yong CHEN ; Xue-song LIU ; Yong-jiang WU
Acta Pharmaceutica Sinica 2025;60(2):471-478
The general models for intermediates quality analysis in the production process of Yaobitong capsule were established by near infrared spectroscopy (NIRS) combined with chemometrics, realizing the rapid determination of notoginsenoside R1, ginsenoside Rg1, ginsenoside Re, ginsenoside Rb1, ginsenoside Rd and moisture. The spray-dried fine powder and total mixed granule were selected as research objects. The contents of five saponins were determined by high performance liquid chromatography and the moisture content was determined by drying method. The measured contents were used as reference values. Meanwhile, NIR spectra were collected. After removing abnormal samples by Monte Carlo cross validation (MCCV), Monte Carlo uninformative variables elimination (MC-UVE) and competitive adaptive reweighted sampling (CARS) were used to select feature variables respectively. Based on the feature variables, quantitative models were established by partial least squares regression (PLSR), extreme learning machine (ELM) and ant lion optimization least squares support vector machine (ALO-LSSVM). The results showed that CARS-ALO-LSSVM model had the optimum effect. The correlation coefficients of the six index components were greater than 0.93, and the relative standard errors were controlled within 6%. ALO-LSSVM was more suitable for a large number of samples with rich information, and the prediction effect and stability of the model were significantly improved. The general models with good predicting effect can be used for the rapid quality determination of Yaobitong capsule intermediates.
10.Research progress of antifungal drugs from natural sources
Shao-jie CHU ; Yan ZHENG ; Shuang-shuang SU ; Xue-song WU ; Hong YAN ; Shao-xin CHEN ; Hong-bo WANG
Acta Pharmaceutica Sinica 2025;60(1):48-57
As the number of patients with compromised immune function increases and fungal resistance develops, so does the risk of contracting deadly fungi in humans. Both fungi and humans are eukaryotes, so identifying unique targets for antifungal drug development is difficult. In addition, the existing antifungal drugs are limited by toxicity, drug interaction and drug resistance in practical application, which leads to the increasing incidence and fatal rate of fungal infections. Therefore, it is urgent to develop new antifungal drugs. The semi-synthetic technology using microbial fermentation products from natural sources as lead compounds has become the most used method in structural modification of antifungal drugs due to its advantages of few reaction steps and easy operation. This paper will introduce the current status of natural antifungal drugs in clinical use, as well as the latest progress in the research and development of new semi-synthetic antifungal drugs, and summarize their mechanism of action, structural modifications, advantages and disadvantages, so as to provide reference for the subsequent development of new antifungal drugs.

Result Analysis
Print
Save
E-mail