1.Ameliorative effects of Lycii Fructus-Chrysanthemi Flos at different ratios on retinal damage in mice.
Bing LI ; Sheng GUO ; Yue ZHU ; Xue-Sen WANG ; Dan-Dan WEI ; Hong-Jie KANG ; Wen-Hua ZHANG ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2025;50(3):732-740
This study aimed to compare the ameliorative effects of Lycii Fructus and Chrysanthemi Flos at different ratios on retinal damage in mice and to elucidate the underlying mechanisms. A retinal injury model was established by intraperitoneal injection of sodium iodate(NaIO_3) solution. The mice were divided into the following groups: blank group, model group, positive drug(AREDS 2) group, low-and high-dose groups of Lycii Fructus and Chrysanthemi Flos at 1∶1, low-and high-dose groups at 3∶1, and low-and high-dose groups at 1∶3. Administration was carried out 15 days after modeling. The visual acuity of the mice was assessed using the black-and-white box test. The fundus was observed using an optical coherence tomography device, and retinal thickness was measured. HE staining was used to observe the morphology and pathological changes of the retina. The levels of oxidative factors in serum and ocular tissues were measured using assay kits. The levels of inflammatory factors in serum and ocular tissues were detected by enzyme-linked immunosorbent assay(ELISA), and the expression of Nrf2, HO-1, and NF-κB proteins in ocular tissues was analyzed by Western blot. The results showed that after administration of Lycii Fructus and Chrysanthemi Flos at different ratios, the model group showed improved retinal thinning and disordered arrangement of retinal layers, elevated content of SOD and GSH in the serum and ocular tissues, and reduced levels of MDA, TNF-α, IL-1β, and IL-6. Lycii Fructus and Chrysanthemi Flos at 1∶1 and 1∶3 showed better improvement effects. The combination significantly upregulated the expression levels of Nrf2 and HO-1 and downregulated the expression of NF-κB p65. These results indicate that Lycii Fructus and Chrysanthemi Flos at different ratios can improve retinal damage, reduce oxidative stress, and alleviate inflammation in both the body and ocular tissues of mice. The mechanism may be related to the regulation of the Nrf2/HO-1 and NF-κB signaling pathways in ocular tissues. These findings provide a theoretical basis for the clinical application of Lycii Fructus and Chrysanthemi Flos in the treatment of dry age-related macular degeneration.
Animals
;
Mice
;
Retina/injuries*
;
Male
;
Lycium/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Chrysanthemum/chemistry*
;
NF-kappa B/genetics*
;
Humans
;
Retinal Diseases/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress/drug effects*
;
Flowers/chemistry*
;
Heme Oxygenase-1/genetics*
2.Withanolide derivatives from Physalis angulata var. villosa and their cytotoxic activities.
Peng WANG ; Jue YANG ; Yu ZHANG ; Jun JIN ; Meijun CHEN ; Xiaojiang HAO ; Chunmao YUAN ; Ping YI
Chinese Journal of Natural Medicines (English Ed.) 2025;23(6):762-768
A comprehensive phytochemical investigation of the leaves and twigs of Physalis angulata. var. villosa resulted in the isolation of 23 withanolide derivatives, including one novel 13,20-γ-lactone withanolide derivative (1) and three new withanolide derivatives (2-4). Architecturally, physalinin A (1) represents the first identified type B withanolide featuring a 13,20-γ-lactone moiety. The molecular structures of all isolates were elucidated using an integrated approach combining nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), infrared (IR) spectroscopy, and quantum chemical calculations to confirm structural assignments. The antiproliferative activities of all isolated withanolides were evaluated against four human cancer cell lines (HEL, HCT-116, Colo320DM, and MDA-MB-231). Among them, eight derivatives (2, 5-8, 14, 15, and 23) exhibited significant inhibitory effects, with half-maximal inhibitory concentration (IC50) values of 0.18 ± 0.03 to 17.02 ± 0.21 μmol·L-1. Structure-activity relationship (SAR) analysis suggested that the presence of an epoxide ring enhances anticancer activity, potentially through increased reactivity or specific interactions with molecular targets involved in cancer progression. These findings underscore the pharmacological potential of withanolides as promising lead compounds for the development of novel anticancer therapeutics.
Withanolides/isolation & purification*
;
Physalis/chemistry*
;
Humans
;
Molecular Structure
;
Cell Line, Tumor
;
Antineoplastic Agents, Phytogenic/isolation & purification*
;
Cell Proliferation/drug effects*
;
Plant Leaves/chemistry*
;
Plant Extracts/pharmacology*
3.Selenium nanoparticles synthesized by Streptomyces avermitilis: physical and chemical characteristics and inhibitory activity on a pathogen of Lycium barbarum.
Qi ZHANG ; Yani LI ; Rongjuan ZHOU ; Jiayuan QING ; Sijun YUE
Chinese Journal of Biotechnology 2025;41(2):693-705
Biosynthesized selenium nanoparticles (SeNPs) have attracted much attention because of their unique physical, chemical, and biological properties. The microbial reduction of selenium salts to SeNPs has great potential, while there is a lack of elite strains. In this study, we explored the reduction of Na2SeO3 by Streptomyces avermitilis into SeNPs. The colonies and hyphae of the strain and the synthesized SeNPs were characterized by optical microscopy, scanning electron microscopy (SEM), transmission electron microscope (TEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). At the same time, the inhibitory activity of SeNPs on Fusarium oxysporum, the main pathogen causing root rot of Lycium barbarum, was studied. The results showed that S. avermitilis converted Na2SeO3 into SeNPs and tolerated 300 mmol/L Na2SeO3, demonstrating strong tolerance. S. avermitilis synthesized spherical SeNPs in the cytoplasm, and most of SeNPs had a diameter of about 100 nm and were released by hyphal fracture. The SeNPs synthesized by S. avermitilis were amorphous, and their surfaces were dominated by C and Se, with the existence of O, N and other elements. SeNPs had functional groups such as -OH, C=O, C-N, and C-H, which were closely related to the stability and biological activity of SeNPs. The SeNPs synthesized by S. avermitilis showcased significant inhibitory activity on F. oxysporum, and 25.0 μmol/mL SeNPs showcased the inhibition rate of 77.61% and EC50 of 0.556 μmol/mL. In conclusion, S. avermitilis can tolerate high Na2SeO3 stress and mediate the synthesis of SeNPs. The synthesized SeNPs have good stability and strong inhibitory activity, demonstrating the potential application value in the preparation of SeNPs and the control of L. barbarum root rot.
Streptomyces/metabolism*
;
Fusarium/drug effects*
;
Lycium/microbiology*
;
Selenium/metabolism*
;
Nanoparticles/chemistry*
;
Plant Diseases/microbiology*
;
Metal Nanoparticles/chemistry*
;
Antifungal Agents/pharmacology*
4.Cloning and functional characterization of PhNAL1b from Petunia× hybrida cv. Mitchell Diploid.
Xurong YAO ; Tongrui LIU ; Lili DONG ; Xinyi DENG
Chinese Journal of Biotechnology 2025;41(2):869-880
Narrow leaf 1 (NAL1) plays an important role in plant branching, while little is known about the roles of this gene in petunias. In this study, PhNAL1b was cloned from Petunia×hybrida cv. Mitchell Diploid, with a total length of 1 767 bp, encoding a protein composed of 588 amino acid residues and containing the peptidase S64 domain. The PhNAL1b promoter region contained several elements involved in the responses to auxin, jasmonic acid, abscisic acid, and light. The expression analysis showed that PhNAL1b had the highest expression level in roots and the lowest expression level in flowers, and its transcription could be inhibited by decapitation and cytokinin. The subcellular localization analysis showed that PhNAL1b was located in the nucleus and was a nuclear protein. Virus-induced gene silencing was employed to downregulate the expression of PhNAL1b, which resulted in significant increases in branch number and plant height. The results indicated that PhNAL1b played an important role in regulating the branching of petunias. This study lays a foundation for revealing the mechanism of NAL1 in regulating branch development and provides genetic resources for plant architecture improvement.
Petunia/growth & development*
;
Plant Proteins/metabolism*
;
Diploidy
;
Gene Expression Regulation, Plant
;
Cloning, Molecular
;
Promoter Regions, Genetic
5.Progress of research on potato scab and its prevention and control.
Yue MA ; Xiu WANG ; Naiqin ZHONG ; Pan ZHAO ; Jiahe WU
Chinese Journal of Biotechnology 2025;41(10):3651-3666
In recent years, potato scab caused by pathogenic Streptomyces spp. has become widespread globally, with increasing damage severely compromising the commercial value and storability of tubers. The pathogens are transmitted through the soil and seeds of potato, while existing control technologies have demonstrated limited efficacy in preventing the colonization and spread of pathogens, which pose a critical bottleneck in the sustainable development of the potato industry. This study systematically examines the pathogen characteristics and pathogenic mechanisms, evaluates the impacts of soil nutrients and microbial community structure on disease severity, and analyzes limitations in current chemical control, biological control, and disease-resistant variety breeding approaches. We propose an integrated control strategy of disease-resistant varieties, phosphorus fertilizer reduction, fertilizer efficiency enhancement, and phosphorus-soluble antagonistic fungicides, aiming to provide novel research perspectives for achieving effective prevention and control of potato scab.
Solanum tuberosum/microbiology*
;
Plant Diseases/prevention & control*
;
Streptomyces/pathogenicity*
;
Disease Resistance
;
Fungicides, Industrial/pharmacology*
;
Fertilizers
;
Soil Microbiology
6.Screening and fermentation condition optimization of Streptomyces scabies antagonists.
Mengyan DOU ; Ziwei WANG ; Pan ZHAO ; Xiu WANG ; Aiping WANG ; Naiqin ZHONG
Chinese Journal of Biotechnology 2025;41(10):3747-3763
In recent years, potato scab caused by Streptomyces scabies is aggravating year by year, becoming an industrial problem urgently to be resolved. Screening antagonistic bacteria with good inhibitory effect and wide adaptability is the main measure to realize effective prevention and control of the disease. This study screened three strains of antagonistic bacteria DXT2-4, T2-1 and 21-14 with good inhibitory effect on S. scabies by using plate standoff test, and identified them as Bacillus altitudinis, Bacillus safensis and Bacillus pumilus, respectively, based on morphological characteristics, physiological and biochemical properties, and 16S rRNA gene sequences. DXT2-4, T2-1 and 21-14 showed the pot control efficacy of 68.83%, 48.57%, and 57.14%, respectively. The field control efficacy of the three strains was 59.48%, 34.58% and 51.75% in Hulun Buir, Inner Mongolia Autonomous Region and 55.14%, 36.05%, and 49.05% in Huizhou, Guangdong. The three strains could grow normally in the media with pH 1.0-13.0 and with 1%-11% NaCl, and they had inhibitory effects on Rhizoctonia solani, Verticillium dahliae, Alternaria solani, and Fusarium oxysporum. The indole-3-acetic acid yields of DXT2-4, T2-1, and 21-14 were 2.23, 1.11, and 1.67 mg/L, respectively. DXT2-4 and 21-14 demonstrated strong abilities to solubilize phosphorus. The optimal carbon source, nitrogen source, and inorganic salt for fermentation of strain DXT2-4 were 2% molasses+2% corn starch, 2% soybean meal, and 0.3% MgSO4·7H2O, respectively. These findings suggest the three strains of bacteria can efficiently inhibit the growth of S. scabies and have strong environmental adaptability. Particularly, DXT2-4 has the best effects of inhibiting the disease and promoting plant growth, showing a high development value and broad application prospects, this is of great significance for promoting sustainable potato production and ensuring the environmentally sound utilization of resources.
Streptomyces/metabolism*
;
Fermentation
;
Plant Diseases/prevention & control*
;
Solanum tuberosum/growth & development*
;
Bacillus/growth & development*
;
Antibiosis
7.Genome-wide association analysis of agronomic traits related to eggplant fruits: a review.
Cheng LI ; Ting YANG ; Binxian ZHUANG ; Yongxian WEN
Chinese Journal of Biotechnology 2024;40(1):94-103
Eggplant is an important horticultural crop and one of the most widely grown vegetables in the Solanaceae family. Eggplant fruit-related agronomic traits are complex quantitative traits with low efficiency and long cycle time for traditional breeding selection. With the rapid development of high-throughput sequencing technology and bioinformatics tools, genome-wide association study (GWAS) has shown great application potential in analyzing the genetic rules of complex agronomic traits related to eggplant fruits. This paper first reviews the progress of genome-wide association analysis in eggplant fruit shape, fruit color and other fruit-related agronomic traits. Subsequently, aiming at the problem of missing heritability, which is common in the genetic studies of eggplant quantitative traits, this paper puts forward the development strategies of eggplant GWAS in the future based on the hot spots of application of four GWAS strategies in the research of agronomics traits related to eggplant fruits. Lastly, the application of GWAS strategy in the field of eggplant molecular breeding is expected to provide a theoretical basis and reference for the future use of GWAS to analyze the genetic basis of various eggplant fruit-related traits and to select fruit materials that meet consumer needs.
Solanum melongena/genetics*
;
Fruit/genetics*
;
Genome-Wide Association Study
;
Plant Breeding
;
Agriculture
;
Vegetables
8.Investigating the impact of silencing an RNA-binding protein gene SlRBP1 on tomato photosynthesis through RNA-sequencing analysis.
Xiwen ZHOU ; Liqun MA ; Hongliang ZHU
Chinese Journal of Biotechnology 2024;40(1):150-162
Photosynthesis in plants directly affects the synthesis and accumulation of organic matter, which directly influences crop yield. RNA-binding proteins (RBPs) are involved in the regulation of a variety of physiological functions in plants, while the functions of RBPs in photosynthesis have not been clearly elucidated. To investigate the effect of a glycine-rich RNA-binding protein (SlRBP1) in tomato on plant photosynthesis, a stably inherited SlRBP1 silenced plant in Alisa Craig was obtained by plant tissue culture using artificial small RNA interference. It turns out that the size of the tomato fruit was reduced and leaves significantly turned yellow. Chlorophyll(Chl) content measurement, Chl fluorescence imaging and chloroplast transmission electron microscopy revealed that the chloroplast morphology and structure of the leaves of tomato amiR-SlRBP1 silenced plants were disrupted, and the chlorophyll content was significantly reduced. Measurement of photosynthesis rate of wild-type and amiR-SlRBP1 silenced plants in the same period demonstrated that the photosynthetic rate of these plants was significantly reduced, and analysis of RNA-seq data indicated that silencing of SlRBP1 significantly reduced the expression of photosynthesis-related genes, such as PsaE, PsaL, and PsbY, and affected the yield of tomato fruits through photosynthesis.
RNA
;
Solanum lycopersicum/genetics*
;
Photosynthesis/genetics*
;
Chlorophyll
;
RNA-Binding Proteins/genetics*
9.Genome-wide identification of Atropa belladonna WRKY transcription factor gene family and analysis of expression patterns under light and temperature regulation.
Wen-Ze LIU ; Sheng-Wei ZHOU ; Shao-Ke ZHANG ; Liu-Ming WANG ; Xu-Peng GU ; Lei-Xia CHU ; Lu QIAO ; Jie WAN ; Xiao ZHANG ; Lin-Lin YANG ; Cheng-Ming DONG ; Wei-Sheng FENG
China Journal of Chinese Materia Medica 2024;49(21):5843-5855
Based on whole genome data, the identification and expression pattern analysis of the Atropa belladonna WRKY transcription factor family were conducted to provide a theoretical foundation for studying the biological functions and mechanisms of these transcription factors. In this study, bioinformatics methods were employed to identify members of the A. belladonna WRKY gene family and to predict their physicochemical properties, conserved motifs, promoter cis-acting elements, and chromosomal localization. Additionally, the expression patterns of the A. belladonna WRKY gene family under the regulation of environmental factors such as light quality and temperature were analyzed. The results revealed a total of 28 AbWRKY transcription factors, randomly distributed across 16 chromosomes, encoding 324-707 amino acids. Most AbWRKY proteins were acidic, unstable, and hydrophilic. Based on multiple sequence alignment and phylogenetic analysis, the WRKY gene family members were classified into two subfamilies. Conserved motif and domain analysis indicated that WRKY transcription factors in the same subfamily possessed conserved structural features. Promoter analysis predicted that the A. belladonna WRKY family contained light-responsive elements, hormone-responsive elements, and stress-responsive elements. Collinearity analysis showed that AbWRKY24 plays a crucial role in the expansion of the AbWRKY gene family. Then qRT-PCR results indicated that AbWRKY6, AbWRKY8, AbWRKY14, and AbWRKY24 responded to red light stress, while AbWRKY8, AbWRKY14, and AbWRKY24 responded to yellow light/low-temperature combined stress. AbWRKY6 and AbWRKY8 were significantly expressed in leaves and stems, AbWRKY27 and AbWRKY28 were significantly expressed in fibrous roots, and AbWRKY25 was significantly expressed in flowers. This study is the first to identify and analyze the WRKY gene family in A. belladonna and to examine its expression patterns under light and temperature regulation, laying a foundation for in-depth analysis and functional validation of the molecular mechanisms of A. belladonna WRKY transcription factors in responding to light quality and temperature environmental factors.
Transcription Factors/chemistry*
;
Plant Proteins/metabolism*
;
Phylogeny
;
Gene Expression Regulation, Plant
;
Light
;
Temperature
;
Atropa belladonna/metabolism*
;
Multigene Family/genetics*
;
Promoter Regions, Genetic/genetics*
;
Sequence Alignment
;
Amino Acid Sequence
;
Genome, Plant/genetics*
10.Effects of different extraction methods on chemical compositions and biological activities of polysaccharides from Lycium barbarum.
Qing-Yong ZAI ; Hua-Guo CHEN ; Wen XIE ; Xin ZHOU
China Journal of Chinese Materia Medica 2023;48(1):60-70
In this study, five polysaccharides from Lycium barbarum(LBPs)(LBP-1-LBP-5) were selectively extracted by different extraction methods, and the chemical composition, structural characteristics, and biological activities of LBPs were explored. The results of chemical composition analysis showed that alkaloids were not detected in the five LBPs. The total polysaccharide content was(81.95%±1.6%)-(92.96%±0.76%), the uronic acid content was(8.26%±0.46%)-(24.81%±0.46%), and the protein content was(0.06%±0.03%)-(1.35%±0.13%). The monosaccharide compositions of the five LBPs were basically same, mainly including glucose, xylose, and galactose. However, there was significant difference in the content ratio of different monosaccharide. The results of infrared spectra analysis indicated that the five LBPs had typical infrared spectral characteristics of polysaccharides. The results of nuclear magnetic resonance characteristic spectrum analysis revealed that the five LBPs had two configurations of α and β. Meanwhile, there were triple helix structures in LBP-2, LBP-3, and LBP-4, which enhanced the activities of polysaccharides. The results of activities screening suggested that the biological activities of the five LBPs were significantly different. LBP-3 showed the highest lipid oxidation clearance rate, and its antioxidant activity was equivalent to that of the positive control group. The inhibitory rate of LBP-4 on α-amylase and its activation rate of alcohol dehydrogenase were better than those of other fractions, and the inhibitory rate of LBP-4 on α-amylase was slightly higher than that of the positive control group when the mass concentration was 10 g·L~(-1). LBP-2 showed stronger inhibitory activity against α-glucosidase and hyaluronidase. This study provides references for the precise development and utilization of LBPs.
Drugs, Chinese Herbal/chemistry*
;
Lycium/chemistry*
;
Antioxidants/pharmacology*
;
Polysaccharides/chemistry*
;
Monosaccharides

Result Analysis
Print
Save
E-mail