1.A preliminary pharmacophylogenetic study of Solanaceae medicinal plants containing tropane alkaloids.
Er-Huan ZANG ; Qin-Yu LI ; Jin-Fan XU ; Yi ZHANG ; Lin-Lin JIANG ; Xue LI ; Ming-Xu ZHANG ; Yu-Chao LIU ; Qing-Jiang WU ; Zhao-Hua LIU ; Min-Hui LI ; Pei-Gen XIAO
China Journal of Chinese Materia Medica 2021;46(17):4344-4359
The Solanaceae plants distributed in China belong to 105 species and 35 varietas of 24 genera. Some medicinal plants of Solanaceae are rich in tropane alkaloids(TAs), which have significant pharmacological activities. In this paper, the geographical distribution, chemical components, traditional therapeutic effect, pharmacological activities, and biosynthetic pathways of TAs in Solanaceous plants were summarized. Besides, the phylogeny of medicinal plants belonging to Solanaceae was visualized by network diagram. Fourteen genera of Solanaceae plants in China contain TAs and have medical records. TAs mainly exist in Datura, Anisodus, Atropa, Physochlaina, and Hyoscyamus. The TAs-containing species were mainly concentrated in Southwest China, and the content of TAs was closely related to plant distribution area and altitude. The Solanaceae plants containing TAs mainly have antispasmodic, analgesic, antiasthmatic, and antitussive effects. Modern pharmacological studies have proved the central sedative, pupil dilating, glandular secretion-inhibiting, and anti-asthma activities of TAs. These pharmacological activities provide a reasonable explanation for the traditional therapeutic efficacy of tropane drugs. In this paper, the geographical distribution, chemical components, traditional therapeutic effect, and modern pharmacological activities of TAs-containing species in Solanaceae were analyzed for the first time. Based on these data, the genetic relationship of TAs-containing Solanaceae species was preliminarily discussed, which provided a scientific basis for the basic research on TAs-containing solanaceous species and was of great significance for the development of natural medicinal plant resources containing TAs.
Biosynthetic Pathways
;
Phylogeny
;
Plants, Medicinal
;
Solanaceae/genetics*
;
Tropanes
2.Enhanced biosynthesis of scopolamine in transgenic Atropa belladonna by overexpression of h6h gene.
Jin-Di LI ; Bai-Fu QIN ; Chun-Xian YANG ; Xiao-Zhong LAN ; Neng-Biao WU ; Zhi-Hua LIAO
China Journal of Chinese Materia Medica 2013;38(11):1719-1724
Transgenic Atropa belladonna with high levels of scopolamine was developed by metabolic engineering. A functional gene involved in the rate limiting enzyme of h6h involved in the biosynthetic pathway of scopolamine was over expressed in A. belladonna via Agrobacterium-mediation. The transgenic plants were culturing till fruiting through micropropogating and acclimating. The integration of the h6h genes into the genomic DNA of transgenic plants were confirmed by genomic polymerase chain reaction (PCR) analysis. Analysis of the difference of plant height, crown width, stem diameter, leaf length, leaf width, branch number and fresh weight was carried out using SPSS software. The content of hyoscyamine and scopolamine in roots, stems, leaves and fruits was determined by HPLC. The investigation of the expression levels of Hnh6h by qPCR. Both Kan(r) and Hnh6h genes were detected in five transgenic lines of A. belladonna plants (A8, A11, A12, C8 and C19), but were not detected in the controls. The plant height, crown width, stem diameter, leaf length, leaf width, branch number and fresh weight of transgenic plants did not decrease by comparison with the non-transgenic ones, and furthermore some agronomic characters of transgenic plants were better than those of the controls. The highest level of scopolamine was found in leaves of transgenic A. belladonna, and the content of scopolamine was also higher than that of hyoscyamine in leaves. The contents of scopolamine of leaves in different transgenic lines were listed in order: C8 > A12 > C19 > A11 > A8, especially, the content of scopolamine in transgenic line C8 was 2.17 mg x g(-1) DW that was 4.2 folds of the non-transgenic ones (0.42 mg x g(-1) DW). The expression of transgenic Hnh6h was detected in all the transgenic plants but not in the control. The highest level of Hnh6h expression was found in transgenic leaves. Overexpression of Hnh6h is able to break the rate limiting steps involved in the downstream pathway of scopolamine biosynthesis, and thus promotes the metabolic flux flowing toward biosynthesis of scopolamine to improve the capacity of scopolamine biosynthesis in transgenic plants. As a result, transgenic plants of A. belladonna with higher level of scopolamine were developed.
Atropa belladonna
;
genetics
;
metabolism
;
Atropine
;
metabolism
;
Gene Expression
;
Mixed Function Oxygenases
;
genetics
;
metabolism
;
Plant Proteins
;
genetics
;
metabolism
;
Plants, Genetically Modified
;
genetics
;
metabolism
;
Scopolamine Hydrobromide
;
metabolism
;
Solanaceae
;
enzymology
;
genetics
3.Identification of Daturae flos and its adulterants based on DNA barcoding technique.
Jian-ping HAN ; Mei-ni LI ; Kun LUO ; Mei-zi LIU ; Xiao-chen CHEN ; Shi-lin CHEN
Acta Pharmaceutica Sinica 2011;46(11):1408-1412
To identify the original plant of Daturae Flos from its adulterants by DNA barcoding, the sequences of ITS2, psbA-trnH, matK, rbcL of four species including Datura metel, Darura innoxia, Darura stramonium and Brugmansia arborea were compared and analyzed. The PCR and sequencing success rate of the four regions (ITS2, psbA-trnH, matK, rbcL) was 100%, 90%, 100% and 85%, respectively. Sequences were assembled with CodonCode Aligner. K2P distances were calculated and NJ tree was performed by MEGA 4.1. Thirty SNPs were found among ITS2 sequences, and 33 insert/deletes were found among psbA-trnH intergenic regions. The interspecific K2P distance of ITS2 and psbA-trnH was obviously higher than that of the intraspecific one. As to matK and rbcL, there was no "Barcoding Gap" existing between inter- and intra-specific distances. The NJ trees of the four regions/combinations were built separately. Samples of Brugmansia arborea were clustered into one clade, and the other species of Datura L. formed another clade. The results showed that either ITS2 or psbA-trnH was useful to identify Daturae Flos from its adulterants.
Base Sequence
;
DNA Barcoding, Taxonomic
;
methods
;
DNA, Intergenic
;
genetics
;
DNA, Plant
;
genetics
;
Datura
;
classification
;
genetics
;
Datura metel
;
genetics
;
Datura stramonium
;
genetics
;
Drug Contamination
;
Flowers
;
genetics
;
Phylogeny
;
Plants, Medicinal
;
genetics
;
Polymerase Chain Reaction
;
Polymorphism, Single Nucleotide
;
Sequence Analysis, DNA
;
Solanaceae
;
genetics
;
Species Specificity