1.Arbuscular mycorrhizal fungi improve physiological metabolism and ameliorate root damage of Coleus scutellarioides under cadmium stress.
Yanan HOU ; Fan JIANG ; Shuyang ZHOU ; Dingyin CHEN ; Yijie ZHU ; Yining MIAO ; Kai CENG ; Yifang WANG ; Min WU ; Peng LIU
Chinese Journal of Biotechnology 2025;41(2):680-692
Soil cadmium pollution can adversely affect the cultivation of the ornamental plant, Coleus scutellarioides. Upon cadmium contamination of the soil, the growth of C. scutellarioides is impeded, and it may even succumb to the toxic accumulation of cadmium. In this study, we investigated the effects of arbuscular mycorrhizal fungi (AMF) on the adaptation of C. scutellarioides to cadmium stress, by measuring the physiological metabolism and the degree of root damage of C. scutellarioides, with Aspergillus oryzae as the test fungi. The results indicated that cadmium stress increased the activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the content of malondialdehyde (MDA) and proline (Pro) within the cells of C. scutellarioides, but inhibited mycorrhizal infestation rate, root vigour and growth rate to a great degree. With the same cadmium concentration, the inoculation of AMF significantly improved the physiological indexes of C. scutellarioides. The maximum decrease of MDA content was 42.16%, and the content of secondary metabolites rosemarinic acid and anthocyanosides could be increased by up to 27.43% and 25.72%, respectively. Meanwhile, the increase of root vigour was as high as 35.35%, and the DNA damage of the root system was obviously repaired. In conclusion, the inoculation of AMF can promote the accumulation of secondary metabolites, alleviate root damage, and enhance the tolerance to cadmium stress in C. scutellarioides.
Cadmium/toxicity*
;
Mycorrhizae/physiology*
;
Plant Roots/drug effects*
;
Soil Pollutants/toxicity*
;
Stress, Physiological
;
Superoxide Dismutase/metabolism*
2.Identification of HMA gene family and response to cadmium stress in Ophiopogon japonicas.
Zhihui WANG ; Erli NIU ; Yuanliang GAO ; Qian ZHU ; Zihong YE ; Xiaoping YU ; Qian ZHAO ; Jun HUANG
Chinese Journal of Biotechnology 2025;41(2):771-790
Soil cadmium (Cd) pollution is one of the major environmental problems globally. Ophiopogon japonicus, a multifunctional plant extensively used in traditional Chinese medicine, has demonstrated potential in environmental remediation. This study investigated the Cd accumulation pattern of O. japonicus under cadmium stress and identified the heavy metal ATPase (HMA) family members in this plant. Our results demonstrated that O. japonicus exhibited a Cd enrichment factor (EF) of 2.75, demonstrating strong potential for soil Cd pollution remediation. Nine heavy metal ATPase (HMA) members of P1B-ATPases were successfully identified from the transcriptome data of O. japonicus, with OjHMA1-OjHMA6 classified as the Zn/Co/Cd/Pb-ATPases and OjHMA7-OjHMA9 as the Cu/Ag-ATPases. The expression levels of OjHMA1, OjHMA2, OjHMA3, and OjHMA7 were significantly up-regulated under Cd stress, highlighting their crucial roles in cadmium ion absorption and transport. The topological analysis revealed that these proteins possessed characteristic transmembrane (TM) segments of the family, along with functional A, P, and N domains involved in regulating ion absorption and release. Metal ion-binding sites (M4, M5, and M6) existed on the TM segments. Based on the number of transmembrane domains and the residues at metal ion-binding sites, the plant HMA family members were categorized into three subgroups: P1B-1 ATPases, P1B-2 ATPases, and P1B-4 ATPases. Specifically, the P1B-1 ATPase subgroup included the motifs TM4(CPC), TM5(YN[X]4P), and TM6(M[XX]SS); the P1B-2 ATPase subgroup featured the motifs TM4(CPC), TM5(K), and TM6(DKTGT); the P1B-4 ATPase subgroup contained the motifs TM4(SPC) and TM6(HE[X]GT), all of which were critical for protein functions. Molecular docking results revealed the importance of conserved sequences such as CPC/SPC, DKTGT, and HE[X]GT in metal ion coordination and stabilization. These findings provide potential molecular targets for enhancing Cd uptake and tolerance of O. japonicus by genetic engineering and lay a theoretical foundation for developing new cultivars with high Cd accumulation capacity.
Cadmium/metabolism*
;
Adenosine Triphosphatases/metabolism*
;
Ophiopogon/drug effects*
;
Soil Pollutants/toxicity*
;
Plant Proteins/metabolism*
;
Stress, Physiological
;
Multigene Family
;
Gene Expression Regulation, Plant
3.Molecular mechanisms of microbial mercury resistance and their prospective applications in remediation of mercury-contaminated soils.
Di WANG ; Huan LUO ; Xiaojun SHI ; Zhenlun LI ; Ying MA
Chinese Journal of Biotechnology 2025;41(4):1323-1339
Mercury (Hg)-contaminated soil poses a significant threat to the environment and human health. Hg-resistant microorganisms have the ability to survive under the stress of inorganic and organic Hg and effectively reduce Hg levels and toxicity. Compared to physical and chemical remediation methods, microbial remediation technologies have garnered increasing attention in recent years due to their lower cost, remarkable efficacy, and minimal environmental impact. This paper systematically elucidates the molecular mechanisms of Hg resistance in microbes, with a focus on their potential applications in phytoremediation of Hg-contaminated soils through plant-microbe interactions. Furthermore, it highlights the critical role of microbes in enhancing the effectiveness of transgenic plants for Hg remediation, aiming to provide a theoretical foundation and scientific basis for the bioremediation of Hg-contaminated soils.
Mercury/toxicity*
;
Biodegradation, Environmental
;
Soil Pollutants/isolation & purification*
;
Soil Microbiology
;
Plants, Genetically Modified/metabolism*
;
Bacteria/genetics*
4.Advances in bioremediation of polycyclic aromatic hydrocarbons contaminated soil.
Meilin ZHENG ; Yinghao ZHAO ; Lili MIAO ; Xiyan GAO ; Zhipei LIU
Chinese Journal of Biotechnology 2021;37(10):3535-3548
Polycyclic aromatic hydrocarbons (PAHs) are a class of persistent pollutants that are widely distributed in the environment. Due to their stable structure and poor degradability, PAHs exhibit carcinogenic, teratogenic, and mutagenic toxicity to the ecological environment and organisms, thus increasing attentions have been paid to their removals and remediation. Green, safe and economical technologies are widely used in the bioremediation of PAHs-contaminated soil. This article summarizes the present status of PAHs pollution in soil of China from the aspects of origin, migration, fate, and pollution level. Meanwhile, the types of microorganisms and plants capable of degrading PAHs, as well as the underlying mechanisms, are summarized. The features of three major bioremediation technologies, i.e., microbial remediation, phytoremediation, and joint remediation, are compared. Analysis of the interaction mechanisms between plants and microorganisms, selection and cultivation of stress-resistant strains and plants, as well as safety and efficacy evaluation of practical applications, are expected to become future directions in this field.
Biodegradation, Environmental
;
Polycyclic Aromatic Hydrocarbons/toxicity*
;
Soil
;
Soil Microbiology
;
Soil Pollutants
5.Screening of tomato cultivars in cadmium-polluted areas and study on their antioxidant capacity.
Jiamin YANG ; Hexigeduleng BAO ; Jiayue WAN ; Yanfei DING ; Feijuan WANG ; Cheng ZHU
Chinese Journal of Biotechnology 2021;37(1):242-252
To screen the available tomato pollution-safe cultivar varieties and reduce the potential food safety risks in Cd-polluted areas, the differences of Cd accumulation in different tomato (Solanum lycopersicum) varieties in southern China were studied by soil culture and hydroponic experiments. Firstly, the high and low accumulation varieties were selected from 25 tomato varieties under 2.94 mg/kg Cd stress by soil culture test, and then the responses of high and low accumulation tomato varieties to Cd stress were determined by hydroponic experiments. The results of soil culture test show that under 2.94 mg/kg Cd stress, there were significant differences in plant height, total biomass and yield among 25 tomato cultivars, and the Cd contents of fruits of all 25 tomato cultivars exceeded the highest limit value (0.05 mg/kg) of CAC (Codex alimentarius commission). Through cluster analysis, 7, 4 and 14 varieties accumulating relatively high, medium, and low concentrations of Cd in the fruits were screened, among which the highest, the lowest, and the average Cd contents in the fruits were 3.06 mg/kg DW, 1.47 mg/kg DW, and 2.21 mg/kg DW, respectively. The results of hydroponic experiment show that under the same concentration of Cd stress, Qiantangxuri F1, a high Cd accumulating variety, absorbed Cd faster, accumulated more Cd, used shorter oxidative stress response time and had stronger tolerance to Cd than Zhefen 3053, a low Cd accumulating variety. The typical high and low Cd accumulating varieties can provide a reference for agricultural production in heavy metal polluted areas and the development of molecular-assisted breeding methods of PSC. At present, cultivating low Cd accumulating PSC varieties and dynamic monitoring of Cd contents in tomato fruits are feasible methods in medium and light Cd-polluted areas.
Antioxidants
;
Cadmium/toxicity*
;
China
;
Lycopersicon esculentum
;
Plant Breeding
;
Plant Roots/chemistry*
;
Soil Pollutants/toxicity*
6.Effect of exposure to trace elements in the soil on the prevalence of neural tube defects in a high-risk area of China.
Jing HUANG ; Jilei WU ; Tiejun LI ; Xinming SONG ; Bingzi ZHANG ; Pingwen ZHANG ; Xiaoying ZHENG
Biomedical and Environmental Sciences 2011;24(2):94-101
OBJECTIVEOur objective is to build a model that explains the association between the exposure to trace elements in the soil and the risk of neural tube defects.
METHODSWe built a function with different parameters to describe the effects of trace elements on neural tube defects. The association between neural tube defects and trace element levels was transformed into an optimization problem using the maximum likelihood method.
RESULTSTin, lead, nickel, iron, copper, and aluminum had typical layered effects (dosage effects) on the prevalence of neural tube defects. Arsenic, selenium, zinc, strontium, and vanadium had no effect, and molybdenum had one threshold value that affected the prevalence of birth defects.
CONCLUSIONAs an exploratory research work, our model can be used to determine the direction of the effect of the trace element content of cultivated soil on the risk of neural tube defects, which shows the clues by the dosage effect of their toxicological characteristics. Based on our findings, future biogeochemical research should focus on the direct effects of trace elements on human health.
China ; epidemiology ; Dose-Response Relationship, Drug ; Environmental Exposure ; Female ; Humans ; Metals ; chemistry ; toxicity ; Models, Biological ; Neural Tube Defects ; chemically induced ; epidemiology ; Pregnancy ; Prevalence ; Soil Pollutants ; chemistry ; toxicity ; Trace Elements ; chemistry ; toxicity
7.Accumulation and translocation of cadmium in soil and plant and its effects on growth of Artemisia annua and artemisinin content.
Xiaoli HAN ; Luqi HUANG ; Lanping GUO ; Mingjing LI ; Xiuhua LIU ; Xiaobo ZHANG
China Journal of Chinese Materia Medica 2010;35(13):1655-1659
OBJECTIVETo study the accumulation and translocation of cadmium in the soil and Artemisia annua, and observe its effects on growth of A. annua and artemisinin content.
METHODA. annua were cultivated in pots with Cd concentration at 0.5, 1.5, 4.5 mg x kg(-1) level, respectively.
RESULT AND CONCLUSIONThe growth of A. annua was inhibited at all the Cd levels characterized by the decreases of biomass and agronomic parameters; Most of Cd was accumulated in the roots of A. annua, and the ratios of Cd concentrations in roots and aerial part were 1.8:1 and 2.3:1 at 1.5, 4.5 mg x kg(-1) Cd level, respectively. Artemisinin content increased significant at 0.5 mg x kg(-1) Cd level, but there were no significant changes comparing with control group other Cd levels.
Artemisia annua ; chemistry ; drug effects ; growth & development ; metabolism ; Artemisinins ; analysis ; metabolism ; Cadmium ; analysis ; metabolism ; toxicity ; Plant Extracts ; analysis ; metabolism ; Soil Pollutants ; analysis ; metabolism ; toxicity
8.Phthalates esters and child health.
Chinese Journal of Contemporary Pediatrics 2009;11(11):949-953
Air Pollutants
;
analysis
;
Animals
;
Child
;
Esters
;
toxicity
;
Humans
;
Liver
;
drug effects
;
Phthalic Acids
;
analysis
;
metabolism
;
toxicity
;
Reproduction
;
drug effects
;
Soil Pollutants
;
analysis
;
Thyroid Gland
;
drug effects
;
Water Pollutants, Chemical
;
analysis
9.Phenotypic and behavioral defects induced by iron exposure can be transferred to progeny in Caenorhabditis elegans.
Ya-Ou HU ; Yang WANG ; Bo-Ping YE ; Da-Yong WANG
Biomedical and Environmental Sciences 2008;21(6):467-473
OBJECTIVEPrevious work has showed that excess iron accumulation is harmful to reproduction and even promotes death; however, whether the multiple biological toxicity of iron (Fe) exposure could be transferred to progeny remains unknown. The present study used Caenorhabditis elegans to analyze the multiple toxicities of iron exposure and their possible transferable properties.
METHODSThree concentrations of iron sulfate solution (2.5 micromol/L, 75 micromol/L, and 200 micromol/L) were used. The endpoints of lifespan, body size, generation time, brood size, head thrash and body bend frequencies, and chemotaxis plasticity were selected to investigate Fe toxicity and its effect on progeny in Caenorhabditis elegans.
RESULTSThe Fe toxicity could cause multiple biological defects in a dose-dependent manner by affecting different endpoints in nematodes. Most of the multiple biological defects and behavior toxicities could be transferred from Fe-exposed Caenorhabditis elegans to their progeny. Compared to the parents, no recovery phenotypes were observed for some of the defects in the progeny, such as body bend frequency and life span. We further summarized the defects caused by Fe exposure into 2 groups according to their transferable properties.
CONCLUSIONOur results suggest that Fe exposure could cause multiple biological defects, and most of these severe defects could be transferred from Fe exposed nematodes to their progeny.
Animals ; Behavior, Animal ; drug effects ; physiology ; Body Size ; Caenorhabditis elegans ; drug effects ; genetics ; physiology ; Dose-Response Relationship, Drug ; Iron ; toxicity ; Iron Compounds ; toxicity ; Life Expectancy ; Phenotype ; Reproduction ; Soil Pollutants ; toxicity ; Sulfates ; toxicity
10.Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops.
Ejaz ul ISLAM ; Xiao-e YANG ; Zhen-li HE ; Qaisar MAHMOOD
Journal of Zhejiang University. Science. B 2007;8(1):1-13
Heavy metals, such as cadmium, copper, lead, chromium and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. Their presence in the atmosphere, soil and water, even in traces can cause serious problems to all organisms, and heavy metal bioaccumulation in the food chain especially can be highly dangerous to human health. Heavy metals enter the human body mainly through two routes namely: inhalation and ingestion, ingestion being the main route of exposure to these elements in human population. Heavy metals intake by human populations through food chain has been reported in many countries. Soil threshold for heavy metal toxicity is an important factor affecting soil environmental capacity of heavy metal and determines heavy metal cumulative loading limits. For soil-plant system, heavy metal toxicity threshold is the highest permissible content in the soil (total or bioavailable concentration) that does not pose any phytotoxic effects or heavy metals in the edible parts of the crops does not exceed food hygiene standards. Factors affecting the thresholds of dietary toxicity of heavy metal in soil-crop system include: soil type which includes soil pH, organic matter content, clay mineral and other soil chemical and biochemical properties; and crop species or cultivars regulated by genetic basis for heavy metal transport and accumulation in plants. In addition, the interactions of soil-plant root-microbes play important roles in regulating heavy metal movement from soil to the edible parts of crops. Agronomic practices such as fertilizer and water managements as well as crop rotation system can affect bioavailability and crop accumulation of heavy metals, thus influencing the thresholds for assessing dietary toxicity of heavy metals in the food chain. This paper reviews the phytotoxic effects and bioaccumulation of heavy metals in vegetables and food crops and assesses soil heavy metal thresholds for potential dietary toxicity.
Biological Availability
;
Biological Transport, Active
;
Food Contamination
;
analysis
;
prevention & control
;
Humans
;
Metals, Heavy
;
analysis
;
pharmacokinetics
;
toxicity
;
Plants, Edible
;
drug effects
;
growth & development
;
metabolism
;
toxicity
;
Soil Pollutants
;
analysis
;
pharmacokinetics
;
toxicity
;
Vegetables
;
drug effects
;
growth & development
;
metabolism
;
toxicity

Result Analysis
Print
Save
E-mail