1.Progress in endosomal Na⁺,K⁺/H⁺ antiporter in Arabidopsis thaliana.
Chinese Journal of Biotechnology 2019;35(8):1424-1432
Important progress has been made in the interpretation of subcellular location, ion transport characteristics and biological functions of endosomal Na⁺,K⁺/H⁺ antiporter in Arabidopsis thaliana. The endosomal Na⁺,K⁺/H⁺ antiporter contain two members, AtNHX5 and AtNHX6, whose amino acid sequence similarity is 78.7%. Studies have shown that AtNHX5 and AtNHX6 are functionally redundant, and they are all located in Golgi, trans-Golgi network (TGN), endoplasmic reticulum (ER) and prevacuolar compartment (PVC). AtNHX5 and AtNHX6 are critical for salt tolerance stress and the homeostasis of pH and K⁺. It has been reported that there are conservative acidic amino acid residues that can regulate their ion activity in the endosomal NHXs transmembrane domain, which plays a decisive role in their own functions. The results of the latest research indicate that endosomal NHXs affect vacuolar transport and protein storage, and participate in the growth of auxin-mediated development in A. thaliana. In this paper, the progress of subcellular localization, ion transport, function and application of endosomal NHXs in A. thaliana was summarized.
Arabidopsis
;
Arabidopsis Proteins
;
Endosomes
;
Sodium-Hydrogen Exchangers
;
Vacuoles
2.Na+/H+ antiporter and plant salt tolerance.
Zhong-Hai REN ; Xiu-Ling MA ; Yan-Xiu ZHAO ; Hui ZHANG
Chinese Journal of Biotechnology 2002;18(1):16-19
Na+/H+ antiporter plays an important role in mechanisms of the plant salt tolerance, it extrudes Na+ from cell energized by the proton gradient generated by the plasm membrane H(+)-ATPase and/or compartmentalizes Na+ in vacuole energized by the proton gradient generated by the vacuolar membrane H(+)-ATPase and H(+)-PPiase. This review mainly discusses the latest progress in the study of Na+/H+ antiporter in plant and yeast at molecular level.
Phylogeny
;
Plants
;
metabolism
;
Salts
;
metabolism
;
Sodium
;
metabolism
;
Sodium-Hydrogen Exchangers
;
classification
;
metabolism
;
Vacuoles
;
physiology
3.Inhibition of central Na(+)/H(+) exchanger type 3 can alleviate sleep apnea in Sprague-Dawley rats.
Qimin WANG ; Rong ZHOU ; Cheng ZHANG ; Hui DONG ; Jing MA ; Guangfa WANG
Chinese Medical Journal 2014;127(1):48-53
BACKGROUNDRecent studies showed the central Na+/H+ exchanger type 3 (NHE3) has a close relationship with ventilation control. The objective of the study is to investigate the role of NHE3 in sleep apnea in Sprague-Dawley (SD) rats.
METHODSA sleep study was performed on 20 male SD rats to analyze the correlation between the sleep apneic events and total NHE3 protein content and inactive NHE3(pS552) in the brainstem measured by Western blotting. Another 20 adult male SD rats received 3 days of sleep and respiration monitoring for 6 hours a day, with adaption on the first day, 0.5% DMSO microinjection into the fourth ventricle on the second day, and AVE0657 (specific inhibitor of NHE3) microinjection on the third day. Rats were divided into two groups with injection of 5 µmol/L or 8 µmol/L AVE0657 before the sleep study. The effects of AVE0657 on sleep apnea and sleep structure of rats were analyzed through self-control.
RESULTSThe total post-sigh apnea index (TPSAI) and post-sigh apnea index in non-rapid eye movement (NREM) sleep (NPSAI) and total apnea index (AI) in NREM sleep (NAI) were negatively correlated with NHE3(pS552) protein contents in the brainstem (r = -0.534, -0.547 and -0.505, respectively, P < 0.05). The spontaneous apnea index in REM sleep (RSPAI) was positively correlated with the level of NHE3(pS552) protein expression in the brainstem (r = 0.556, P < 0.05). However, the sleep AI had no relationship with total NHE3 protein. Compared with the blank control and microinjection of 0.5% DMSO, 5 µmol/L AVE0657 significantly reduced the total AI and NPSAI (both P < 0.05) without a significant effect on sleep architecture. In contrast to blank control and microinjection of 0.5% DMSO, injection of 8 µmol/L AVE0657 significantly reduced the AI and PSAI in NREM and REM sleep (all P < 0.05).
CONCLUSIONSThe severity of sleep apnea was negatively correlated with central inactive NHE3. A specific inhibitor of NHE3 decreased the sleep AI. Thus, our results indicate that central NHE3 might be a molecular target for sleep apnea treatment, whose inhibitors may be potential therapeutic drugs for sleep apnea.
Animals ; Male ; Rats ; Rats, Sprague-Dawley ; Sleep Apnea Syndromes ; metabolism ; physiopathology ; Sleep, REM ; physiology ; Sodium-Hydrogen Exchanger 3 ; Sodium-Hydrogen Exchangers ; antagonists & inhibitors ; metabolism
4.Na(+)/H(+) exchanger 1 expression and its effect on apoptosis in K562 and HL-60 cells with DNA damage.
Hua-Wen LI ; Li-Hong WANG ; Jian WANG ; Guo-Qiang CHANG ; Wei-Na JIN ; Ya-Ni LIN ; Wei GAO ; Ruo-Jun WANG ; Li MA ; Tian-Xiang PANG
Journal of Experimental Hematology 2011;19(4):857-860
This study was aimed to investigate the expression of Na(+)/H(+) exchanger 1 (NHE1) in K562 and HL-60 cells undergoing DNA damage induced by etoposide and to elucidate the regulating mechanism. Real-time quantitative PCR (RQ-PCR) and Western blot methods were used to determine the expression of NHE1 in K562 cells after the treating with etoposide. Meanwhile, the flow cytometry was used to detect the apoptosis of leukemic cells. The luciferase reporter vector containing NHE1 promoter was constructed to measure relative luciferase activity after treating with different etoposide concentrations. The results showed that the mRNA and protein of NHE1 increased in accordance with apoptosis ratio in HL-60 cells after treated with etoposide (p < 0.05), but no such obvious increase in K562 cells. Treatment with NHE1 specific inhibitor could block etoposide induced alkalization and reduce the apoptosis ratio of HL-60 cells. The expression pattern and apoptosis alteration was not similar in K562 cells. Relative luciferase activity of reporter vector containing NHE1 promoter however increased in K562 cells after treated with etoposide. It is concluded that the expression of NHE1 is up-regulated in the process of apoptosis of HL-60 cells induced by etoposide and depends on the pHi increasing caused by NHE1 up-regulation which is not found in K562 cells although the transcriptional activity increased.
Apoptosis
;
Cation Transport Proteins
;
metabolism
;
DNA Damage
;
Etoposide
;
HL-60 Cells
;
Humans
;
K562 Cells
;
Promoter Regions, Genetic
;
Sodium-Hydrogen Exchanger 1
;
Sodium-Hydrogen Exchangers
;
metabolism
5.Inhibition of NHE1 promotes hypoxia-induced differentiation of K562 leukemic cells.
Wei-Na JIN ; Jian WANG ; Guo-Qiang CHANG ; Ya-Ni LIN ; Li-Hong WANG ; Hua-Wen LI ; Wei GAO ; Qing-Hua LI ; Tian-Xiang PANG
Journal of Experimental Hematology 2011;19(3):661-665
This study was purposed to investigate the effect of hypoxia microenvironment on K562 leukemic cell differentiation, and characteristics of NHE1 involvement in this process. The K562 cells were treated with hypoxia-mimical agent CoCl₂ or under actual hypoxia culture, and the specific NHE1 inhibitor Cariporide was used to inhibit NHE1 activity. The fluorescent probe BCECF was used for pH(i) measurements. Gene expression was analyzed by RT-PCR. The morphological characteristics was determined by Wright's staining. Signaling pathways were detected by Western blot using phosphospecific antibodies. The results indicated that the hypoxia or mimetic hypoxia favored K562 cells differentiation with up-regulation of C/EBPα. Moreover, treatment with Cariporide under hypoxia synergistically enhanced leukemia cell differentiation. Treatment with Cariporide increased levels of phosphorylated ERK5 and P38 mitogen-activated protein kinase (MAPK). It is concluded that the hypoxia or mimetic hypoxia can induce the differentiation of K562 cells, the inhibition of NHE1 activity can promote the hypoxia-induced K562 cell differentiation. The enhancement of hypoxia-induced K562 differentiation by Cariporide via MAPK signal pathway suggests a possible therapeutic target of NHE1 under hypoxia microenvironment in the treatment of leukemias.
Cation Transport Proteins
;
metabolism
;
Cell Differentiation
;
Cell Hypoxia
;
Humans
;
K562 Cells
;
MAP Kinase Signaling System
;
Sodium-Hydrogen Exchanger 1
;
Sodium-Hydrogen Exchangers
;
metabolism
7.Roles of NHE-1 in the proliferation and apoptosis of pulmonary artery smooth muscle cells in rats.
Wei YAO ; Guisheng QIAN ; Xiaojing YANG
Chinese Medical Journal 2002;115(1):107-109
OBJECTIVETo evaluate the roles of Na+/H+ exchanger-1 (NHE-1) in the proliferation and apoptosis of pulmonary artery smooth muscle cells in rats.
METHODSTwenty Wistar rats were randomized into control group and 3-week hypoxic group. Intracellular pH (pHi) of the smooth muscle was determined with fluorescence measurement of the pH-sensitive dye BCECF-AM, and the expression of NHE-1 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR). Primary culture of pulmonary artery smooth muscle cells in vitro was performed. In situ cell death detection kit (TUNEL) was used for studying the effect of specific NHE-1 inhibitor-dimethyl amiloride (DMA) on the apoptosis of muscle cells which had intracellular acidification.
RESULTSpHi value and NHE-1 mRNA expression of pulmonary artery smooth muscle cells were significantly higher in the hypoxic group than in the control group (P < 0.01, P < 0.001). DMA elevated the apoptotic ratio remarkably. The effect was enhanced when DMA concentration increased and the time prolonged.
CONCLUSIONSWith the function of adjusting pHi, NHE-1 may play an important role in the proliferation and apoptosis of pulmonary artery smooth muscle cells.
Animals ; Apoptosis ; Cell Division ; Male ; Muscle, Smooth, Vascular ; cytology ; Pulmonary Artery ; cytology ; Rats ; Rats, Wistar ; Sodium-Hydrogen Exchangers ; physiology
8.Bicarbonate reabsorption in proximal renal tubule: molecular mechanisms and metabolic acidosis.
Yi-Min GUO ; Ying LIU ; Li-Ming CHEN
Acta Physiologica Sinica 2014;66(4):398-414
HCO3(-) reabsorption in the renal tubules plays a critically important role in maintaining the global acid-base balance. Loss of HCO3(-) causes metabolic acidosis. Proximal renal tubule is the major site for HCO3(-) reabsorption, accounting for more than 80% of total HCO3(-) reabsorption along the nephron. Over the past more than half centuries, tremendous progresses have been made on understanding the molecular mechanisms underlying the HCO3(-) reabsorption in proximal tubules. The transepithelial movement of HCO3(-) involves the coordinated operation of machineries on both the apical and the basolateral membranes of the epithelial cells. On the apical domain, Na(+)-H(+) exchanger NHE3 and the vacuolar H(+)-ATPase are two major pathways mediating the apical uptake of HCO3(-)-related species. Taken together, NHE3 and H(+)-ATPase are responsible for about 80% of HCO3(-) reabsorption in the proximal tubule. The remaining 20% is likely mediated by pathways yet to be characterized. On the basolateral membrane, NBCe1 represents the only major known pathway mediating the extrusion of HCO3(-) coupled with Na(+) into the interstitial space. In the present article, we provide a historical view about the studies on the mechanisms of HCO3(-) reabsorption since 1940s. Moreover, we summarize the latest progresses emerging over the past decade in the physiological as well as pathological roles of acid-base transporters underlying the HCO3(-) reabsorption in proximal tubules.
Acidosis
;
physiopathology
;
Animals
;
Bicarbonates
;
metabolism
;
Humans
;
Kidney Tubules, Proximal
;
physiopathology
;
Sodium-Hydrogen Exchangers
;
physiology
;
Vacuolar Proton-Translocating ATPases
;
physiology
9.Effect of cariporide on immature rabbit heart.
Xiang CHEN ; Jian-an YANG ; Xiang-hua ZHANG ; Yi-fei YU
Chinese Journal of Surgery 2003;41(10):778-780
OBJECTIVETo investigate the protective effects of Cariporide on immature rabbit heart, and to search for the protective mechanism of the Na(+)/H(+) exchange inhibitor on immature rabbit hearts.
METHODSNew Zealand immature rabbits were randomly divided into two groups (n = 12 in each group). The isolated rabbit heart model was involved in this study. The hearts were submitted to 60 minutes of normothermic ischemia with cardioplegia per 20 minutes of reperfusion. Group I received St. Thomas No2 as cardioprotective solution. Group II received St. Thomas No2 with addition of cariporide (10 micro mol/L). The left ventricular function was recorded, including left ventricular systolic pressure (LVSP), left ventricular dystolic pressure (LVDP), coronary artery flow (CAF), mean aortic pressure (MAP), aortic flow (AF) and dp/dt max. The levels of creatine phosphokinase (CK), lactic dehydrogenase (LDH) of coronary sinus venous solution were measured. The ventricular cardiomyocytes isolated from other 6 immature rabbit hearts were subdivided into 3 groups of each heart, which were attained by means of collagenase-perfusion. All cells were incubated with calcium fluoresence indicator Fluo-3/AM, and then the intracellular free calcium was measured under the laser scanning con-focal microscopy. The baseline was measured after isolation without anoxic/re-oxygenation. The control group received anoxic conditions for 60 minutes and re-oxygenation for 30 minutes, then was measured. The experiment group received the same conditions as control group with addition of Cariporide (1 micromol/L).
RESULTSAfter ischaemia/reperfusion, the percentage of recovery of myocardial function in group II was much better than group I; the LVDP, LVSP, MAP, AF, CAF and dp/dt max showed markedly better recovery in group II. The release of CK, LDH was significantly increased in Group I. After anoxic/re-oxygenation, the intracellular free calcium of isolated immature rabbit ventricular myocytes in control group increased significantly than baseline (P < 0.01); there were no significant difference of immature myocardial [Ca(2+)]i between experiment group and baseline (P > 0.05); and the experiment group myocardial [Ca(2+)]i reduced significantly than control (P < 0.01).
CONCLUSIONSCariporide demonstrates significant cardio-protective effects for immature myocardium ischemia/reperfusion, and the protective mechanism may be due to the inhibition of the intracellular free calcium overload.
Animals ; Arrhythmias, Cardiac ; etiology ; Calcium ; metabolism ; Female ; Guanidines ; pharmacology ; Male ; Myocardial Reperfusion Injury ; prevention & control ; Rabbits ; Sodium ; metabolism ; Sodium-Hydrogen Exchangers ; antagonists & inhibitors ; Sulfones ; pharmacology
10.Some factors on hepatic stellate cells activation.
Wei-feng YANG ; Hou-chang CHEN ; Yi-ping JIANG
Chinese Journal of Hepatology 2004;12(2):121-123