1.Intracellular acidosis decreases the outward Na(+)-Ca2+ exchange current in guinea pig ventricular myocytes.
Ek Ho LEE ; So Ra PARK ; Kwang Se PAIK ; Chang Kook SUH
Yonsei Medical Journal 1995;36(2):146-152
The Na(+)-Ca2+ exchange transport operating in outward mode has been suggested to cause Ca2+ entry during reperfusion or reoxygenation, exchanging extracellular Ca2+ for intracellular Na+ that has accumulated during ischemia or cardioplegia. During cardioplegia, however, an increase in Ca2+ entry via this mechanism can be decreased due to increased intracellular H+ activity and a decrease in cellular ATP content. In this study giant excised cardiac sarcolemmal membrane patch clamp technique was employed to investigate the effect of cytosolic pH change on the Na(+)-Ca2+ exchanger, excluding the effect of ATP, in guinea pig cardiac myocytes. The outward Na(+)-dependent current, which has a characteristics of Hill equation, was decreased as pH was decreased in the range of 7.5-6.5. The current density generated by the Na(+)-Ca2+ exchange transport was 56.6 +/- 4.4 pA/pF (Mean +/- S.E.M.) at pH 7.2 and decreased to 42.9 +/- 3.0 pA/pF at pH 6.9. These results imply that Na(+)-Ca2+ exchange transport, operating in a reverse mode during cardioplegia, decreases due to increased intracellular H+, and further suggest that consequent intracellular Na+ accumulation is one of aggravating factors for Ca2+ influx during reoxygenation or reperfusion.
Acidosis/*metabolism
;
Animal
;
Calcium/*metabolism
;
Electric Conductivity
;
Guinea Pigs
;
Heart Ventricle/metabolism
;
Hydrogen-Ion Concentration
;
Ion Transport
;
Myocardium/*metabolism
;
Sodium/*metabolism
;
Sodium-Hydrogen Antiporter/physiology
;
Support, Non-U.S. Gov't
2.Altered Renal Sodium Transporter Expression in an Animal Model of Type 2 Diabetes Mellitus.
Yun Kyu OH ; Kwon Wook JOO ; Jay Wook LEE ; Un Sil JEON ; Chun Soo LIM ; Jin Suk HAN ; Mark A KNEPPER ; Ki Young NA
Journal of Korean Medical Science 2007;22(6):1034-1041
Hemodynamic factors play an important role in the development and/or progression of diabetic nephropathy. We hypothesized that renal sodium transporter dysregulation might contribute to the hemodynamic alterations in diabetic nephropathy. Otsuka Long Evans Tokushima Fatty (OLETF) rats were used as an animal model for type 2 diabetes. Long Evans Tokushima (LETO) rats were used as controls. Renal sodium transporter regulation was investigated by semiquantitative immunoblotting and immunohistochemistry of the kidneys of 40-week-old animals. The mean serum glucose level in OLETF rats was increased to 235+/-25 mg/dL at 25 weeks, and the hyperglycemia continued up to the end of 40 weeks. Urine protein/ creatinine ratios were 10 times higher in OLETF rats than in LETO rats. At 40th week, the abundance of the epithelial sodium channel (ENaC) beta-subunit was increased in OLETF rats, but the abundance of the ENaC gamma-subunit was decreased. No significant differences were observed in the ENaC alpha-subunit or other major sodium transporters. Immunohistochemistry for the ENaC beta-subunit showed increased immunoreactivity in OLETF rats, whereas the ENaC gamma-subunit showed reduced immunoreactivity in these rats. In OLETF rats, ENaC beta-subunit upregulation and ENaC gamma-subunit downregulation after the development of diabetic nephropathy may reflect an abnormal sodium balance.
Animals
;
Blood Glucose/analysis
;
Diabetes Mellitus, Type 2/*metabolism
;
*Disease Models, Animal
;
Epithelial Sodium Channel/*analysis
;
Hypertension/complications
;
Immunoblotting
;
Immunohistochemistry
;
Kidney/*metabolism
;
Male
;
Rats
;
Sodium/*metabolism
;
Sodium-Hydrogen Antiporter/genetics
;
Sodium-Potassium-Chloride Symporters/genetics
3.A novel Na+-dependent transporter and NHE3 mediate H+ efflux in the luminal membrane of the pancreatic duct: regulation by cAMP.
Min Goo LEE ; Wooin AHN ; Joo Young CHOI ; Shmuel MUALLEM ; Kyung Hwan KIM
Journal of Korean Medical Science 2000;15(Suppl):S29-S30
No abstract available.
1-Methyl-3-isobutylxanthine/pharmacology
;
Ammonium Compounds/pharmacology
;
Animal
;
Biological Transport/physiology
;
Biological Transport/drug effects
;
Cell Membrane/metabolism
;
Cyclic AMP/metabolism*
;
Forskolin/pharmacology
;
Guanidines/pharmacology
;
Mice
;
Mice, Knockout
;
Pancreatic Ducts/metabolism*
;
Phosphodiesterase Inhibitors/pharmacology
;
Protons
;
Sodium-Hydrogen Antiporter/metabolism*
;
Sodium-Hydrogen Antiporter/genetics
;
Sulfones/pharmacology
4.A Novel Polyclonal Antiserum against Toxoplasma gondii Sodium Hydrogen Exchanger 1.
Bin XIAO ; Zhenzhan KUANG ; Yanli ZHAN ; Daxiang CHEN ; Yang GAO ; Ming LI ; Shuhong LUO ; Wenbo HAO
The Korean Journal of Parasitology 2016;54(1):21-29
The sodium hydrogen exchanger 1 (NHE1), which functions in maintaining the ratio of Na+ and H+ ions, is widely distributed in cell plasma membranes. It plays a prominent role in pH balancing, cell proliferation, differentiation, adhesion, and migration. However, its exact subcellular location and biological functions in Toxoplasma gondii are largely unclear. In this study, we cloned the C-terminal sequence of T. gondii NHE1 (TgNHE1) incorporating the C-terminal peptide of NHE1 (C-NHE1) into the pGEX4T-1 expression plasmid. The peptide sequence was predicted to have good antigenicity based on the information obtained from an immune epitope database. After induction of heterologous gene expression with isopropyl-b-D-thiogalactoside, the recombinant C-NHE1 protein successfully expressed in a soluble form was purified by glutathione sepharose beads as an immunogen for production of a rabbit polyclonal antiserum. The specificity of this antiserum was confirmed by western blotting and immunofluorescence. The antiserum could reduce T. gondii invasion into host cells, indicated by the decreased TgNHE1 expression in T. gondii parasites that were pre-incubated with antiserum in the process of cell entry. Furthermore, the antiserum reduced the virulence of T. gondii parasites to host cells in vitro, possibly by blocking the release of Ca2+. In this regard, this antiserum has potential to be a valuable tool for further studies of TgNHE1.
Animals
;
Cell Line
;
Immune Sera/genetics/immunology/*metabolism
;
Male
;
Mice
;
Protozoan Proteins/genetics/*metabolism
;
Rabbits
;
Recombinant Proteins/immunology
;
Sheep
;
Sodium-Hydrogen Antiporter/genetics/immunology/*metabolism
;
Toxoplasma/genetics/immunology/*metabolism
;
Toxoplasmosis/parasitology/prevention & control
5.Changes in the expression of c-myc, RB and tyrosine-phosphorylated proteins during proliferation of NIH 3T3 cells induced by hyaluronic acid.
Soon Ok MOON ; Ji Hyun LEE ; Tai Jin KIM
Experimental & Molecular Medicine 1998;30(1):29-33
We have shown that hyaluronic acid stimulates the proliferation of quiescent NIH 3T3 cells. We have shown that treatment of 1 mg/ml hyaluronic acid results in increase of tyrosine phosphorylation of two proteins, MW 124 kDa and 60 kDa as detected by anti-tyrosine antibodies by Western blot analysis. Maximum phosphorylation occurred within 2 h after addition of 1 mg/ml hyaluronic acid. Stimulation of proliferation was also accompanied by increase in c-Myc protein, which was inhibited by amlloride, an inhibitor of Na+/H+ antiporter and EGTA and increase in the steady state level of pRb, the RB gene product. These results suggest that the intracellular signal transduction pathways that mediate the stimulatory effects of hyaluronic acid on cellular proliferation are similar to those of growth factors.
3T3 Cells
;
Amiloride/pharmacology
;
Animal
;
Cell Division
;
Dose-Response Relationship, Drug
;
Egtazic Acid/pharmacology
;
Hyaluronic Acid/pharmacology*
;
Mice
;
Mitogens/pharmacology*
;
Phosphoproteins/metabolism*
;
Phosphorylation
;
Proto-Oncogene Proteins c-myc/metabolism*
;
Retinoblastoma Protein/metabolism*
;
Signal Transduction
;
Sodium-Hydrogen Antiporter/antagonists & inhibitors
;
Tyrosine
6.High Dose Vitamin D3 Attenuates the Hypocalciuric Effect of Thiazide in Hypercalciuric Rats.
Hye Ryoun JANG ; Jay Wook LEE ; Sejoong KIM ; Nam Ju HEO ; Jeong Hwan LEE ; Hyo Sang KIM ; Ji Yong JUNG ; Yun Kyu OH ; Ki Young NA ; Jin Suk HAN ; Kwon Wook JOO
Journal of Korean Medical Science 2010;25(9):1305-1312
Thiazide is known to decrease urinary calcium excretion. We hypothesized that thiazide shows different hypocalciuric effects depending on the stimuli causing hypercalciuria. The hypocalciuric effect of hydrochlorothiazide (HCTZ) and the expression of transient receptor potential vanilloid 5 (TRPV5), calbindin-D(28K), and several sodium transporters were assessed in hypercalciuric rats induced by high calcium diet and vitamin D3. Urine calcium excretion and the expression of transporters were measured from 4 groups of Sprague-Dawley rats; control, HCTZ, high calcium-vitamin D, and high calcium-vitamin D with HCTZ groups. HCTZ decreased urinary calcium excretion by 51.4% in the HCTZ group and only 15% in the high calcium-vitamin D with HCTZ group. TRPV5 protein abundance was not changed by HCTZ in the high calcium-vitamin D with HCTZ group compared to the high calcium-vitamin D group. Protein abundance of NHE3, SGLT1, and NKCC2 decreased in the hypercalciuric rats, and only SGLT1 protein abundance was increased by HCTZ in the hypercalciuric rats. The hypocalciuric effect of HCTZ is attenuated in high calcium and vitamin D-induced hypercalciuric rats. This attenuation seems to have resulted from the lack of HCTZ's effect on protein abundance of TRPV5 in severe hypercalciuric condition induced by high calcium and vitamin D.
Animals
;
Calcium/therapeutic use/urine
;
Calcium Channels/genetics/metabolism
;
Cholecalciferol/*toxicity
;
Hydrochlorothiazide/*therapeutic use
;
Hypercalciuria/chemically induced/*drug therapy
;
Rats
;
Rats, Sprague-Dawley
;
Sodium Chloride Symporter Inhibitors/*therapeutic use
;
Sodium-Glucose Transporter 1/genetics/metabolism
;
Sodium-Hydrogen Antiporter/genetics/metabolism
;
Sodium-Potassium-Chloride Symporters/genetics/metabolism
;
TRPV Cation Channels/genetics/metabolism
7.Increased Expression of Sodium Transporters in Rats Chronically Inhibited of Nitric Oxide Synthesis.
Joon Sik KIM ; Ki Chul CHOI ; Myung Ho JEONG ; Soo Wan KIM ; Yoon Wha OH ; Jong Un LEE
Journal of Korean Medical Science 2006;21(1):1-4
The present study was done to determine whether endogenous nitric oxide (NO) plays a role in the regulation of sodium transporters in the kidney. Male Sprague-Dawley rats were treated with NG-nitro-L-arginine methyl ester (L-NAME, 100 mg/L drinking water) for 4 weeks. Control rats were supplied with tap water without drugs. Expression of Na, K-ATPase, type 3 Na/H exchanger (NHE3), Na/K/2Cl cotransporter (BSC1), and thiazide-sensitive Na/Cl cotransporter (TSC) proteins was determined in the kidney by Western blot analysis. Catalytic activity of Na,K-ATPase was also determined. The treatment with L-NAME significantly and steadily increased the systemic blood pressure. Total and fractional excretion of urinary sodium decreased significantly, while creatinine clearance remained unaltered. Neither plasma renin activity nor aldosterone concentration was significantly altered. The alpha1 subunit expression and the catalytic activity of Na, K-ATPase were increased in the kidney. The expression of NHE3, BSC1 and TSC was also increased significantly. These results suggest that endogenously-derived NO exerts a tonic inhibitory effect on the expression of sodium transporters, including Na, K-ATPase, NHE3, BSC1, and TSC, in the kidney.
Animals
;
Blotting, Western
;
Carrier Proteins/*biosynthesis
;
Enzyme Inhibitors/pharmacology
;
Kidney/drug effects/metabolism
;
Male
;
NG-Nitroarginine Methyl Ester/*pharmacology
;
Na(+)-K(+)-Exchanging ATPase/biosynthesis
;
Nitric Oxide Synthase/*antagonists & inhibitors/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Drug/biosynthesis
;
Sodium/*metabolism
;
Sodium Chloride Symporters/biosynthesis
;
Sodium-Hydrogen Antiporter/biosynthesis
;
Sodium-Potassium-Chloride Symporters/biosynthesis
8.Effects of Thiazide on the Expression of TRPV5, Calbindin-D28K, and Sodium Transporters in Hypercalciuric Rats.
Hye Ryoun JANG ; Sejoong KIM ; Nam Ju HEO ; Jeong Hwan LEE ; Hyo Sang KIM ; Soren NIELSEN ; Un Sil JEON ; Yun Kyu OH ; Ki Young NA ; Kwon Wook JOO ; Jin Suk HAN
Journal of Korean Medical Science 2009;24(Suppl 1):S161-S169
TRPV5 is believed to play an important role in the regulation of urinary calcium excretion. We assessed the effects of hydrochlorothiazide (HCTZ) on the expression of TRPV5, calbindin-D28K, and several sodium transporters in hypercalciuric rats. Sprague- Dawley rats were divided into 4 groups; control, HCTZ, high salt, and high salt with HCTZ group in experiment 1; control, HCTZ, high calcium (Ca), and high Ca with HCTZ group in experiment 2. To quantitate the expression of TRPV5, calbindin- D28K, and sodium transporters, western blotting was performed. In both experiments, HCTZ significantly decreased urinary calcium excretion. TRPV5 protein abundance decreased in all hypercalciuric rats, and restored by HCTZ in both high salt with HCTZ and high Ca with HCTZ group. Calbindin-D28K protein abundance increased in the high salt and high salt with HCTZ groups, but did not differ among groups in experiment 2. Protein abundance of NHE3 and NKCC2 decreased in all hypercalciuric rats, and were restored by HCTZ in only high Ca-induced hypercalciuric rats. In summary, protein abundance of TRPV5, NHE3, and NKCC2 decreased in all hypercalciuric rats. The hypocalciuric effect of HCTZ is associated with increased protein abundance of TRPV5 in high salt or calcium diet-induced hypercalciuric rats.
Animals
;
Biological Transport
;
Calcium/urine
;
Calcium Channels/chemistry
;
Calcium-Binding Protein, Vitamin D-Dependent/*biosynthesis
;
Hydrochlorothiazide/pharmacology
;
Hypercalciuria/*therapy
;
Male
;
Models, Biological
;
Rats
;
Rats, Sprague-Dawley
;
Sodium/*metabolism
;
Sodium-Hydrogen Antiporter/chemistry
;
Sodium-Potassium-Chloride Symporters/metabolism
;
TRPV Cation Channels/*biosynthesis/chemistry
;
Thiazides/*pharmacology
9.Oxidative Stress-Activated NHE1 Is Involved in High Glucose-Induced Apoptosis in Renal Tubular Epithelial Cells.
Yiqing WU ; Min ZHANG ; Rui LIU ; Chunjie ZHAO
Yonsei Medical Journal 2016;57(5):1252-1259
PURPOSE: Diabetic nephropathy (DN) is a prevalent chronic microvascular complication of diabetes mellitus involving disturbances in electrolytes and the acid-base balance caused by a disorder of glucose metabolism. NHE1 is a Na+/H+ exchanger responsible for keeping intracellular pH (pHi) balance and cell growth. Our study aimed to investigate roles of NHE1 in high glucose (HG)-induced apoptosis in renal tubular epithelial cells. MATERIALS AND METHODS: Renal epithelial tubular cell line HK-2 was cultured in medium containing 5 mM or 30 mM glucose. Then, cell apoptosis, oxidative stress, NHE1 expression, and pHi were evaluated. NHE1 siRNA and inhibitor were used to evaluate its role in cell apoptosis. RESULTS: HG significantly increased cell apoptosis and the production of reactive oxygen species (ROS) and 8-OHdG (p<0.05). Meanwhile, we found that HG induced the expression of NHE1 and increased the pHi from 7.0 to 7.6 after 48 h of incubation. However, inhibiting NHE1 using its specific siRNA or antagonist DMA markedly reduced cell apoptosis stimulated by HG. In addition, suppressing cellular oxidative stress using antioxidants, such as glutathione and N-acetyl cysteine, significantly reduced the production of ROS, accompanied by a decrease in NHE1. We also found that activated cyclic GMP-Dependent Protein Kinase Type I (PKG) signaling promoted the production of ROS, which contributed to the regulation of NHE1 functions. CONCLUSION: Our study indicated that HG activates PKG signaling and elevates the production of ROS, which was responsible for the induction of NHE1 expression and dysfunction, as well as subsequent cell apoptosis, in renal tubular epithelial cells.
Antioxidants/metabolism
;
Apoptosis/*drug effects
;
Cation Transport Proteins/*metabolism
;
Cell Cycle/drug effects
;
Cell Line
;
Dose-Response Relationship, Drug
;
Epithelial Cells/*cytology/drug effects/*metabolism
;
Glucose/*pharmacology
;
Glutathione/metabolism
;
Humans
;
Kidney Tubules/*cytology
;
Oxidative Stress/*drug effects
;
Reactive Oxygen Species/metabolism
;
Signal Transduction/drug effects
;
Sodium-Hydrogen Antiporter/*metabolism
10.Angiotensin II AT1 Receptor Blockade Changes Expression of Renal Sodium Transporters in Rats with Chronic Renal Failure.
Eun Jung KIM ; Yong Wuk JUNG ; Tae Hwan KWON
Journal of Korean Medical Science 2005;20(2):248-255
We aimed to examine the effects of angiotensin II AT1 receptor blocker on the expression of major renal sodium transporters and aquaporin-2 (AQP2) in rats with chronic renal failure (CRF). During 2 wks after 5/6 nephrectomy or sham operation, both CRF rats (n=10) and sham-operated control rats (n=7) received a fixed amount of low sodium diet and had free access to water. CRF rats (n=10) were divided into two groups which were either candesartan-treated (CRF-C, n=4) or vehicletreated (CRF-V, n=6). Both CRF-C and CRF-V demonstrated azotemia, decreased GFR, polyuria, and decreased urine osmolality compared with sham-operated rats. When compared with CRF-V, CRF-C was associated with significantly higher BUN levels and lower remnant kidney weight. Semiquantitative immunoblotting demonstrated decreased AQP2 expression in both CRF-C (54% of control levels) and CRF-V (57%), whereas BSC-1 expression was increased in both CRF groups. Particularly, CRF-C was associated with higher BSC-1 expression (611%) compared with CRF-V (289%). In contrast, the expression of NHE3 (25%) and TSC (27%) was decreased in CRF-C, whereas no changes were observed in CRF-V. In conclusion, 1) candesartan treatment in an early phase of CRF is associated with decreased renal hypertrophy and increased BUN level; 2) decreased AQP2 level in CRF is likely to play a role in the decreased urine concentration, and the downregulation is not altered in response to candesartan treatment; 3) candesartan treatment decreases NHE3 and TSC expression; and 4) an increase of BSC-1 is prominent in candesartan-treated CRF rats, which could be associated with the increased delivery of sodium and water to the thick ascending limb.
Angiotensin II Type 1 Receptor Blockers
;
Animals
;
Aquaporins/genetics
;
Benzimidazoles/*pharmacology
;
Blood Urea Nitrogen
;
Kidney Failure, Chronic/drug therapy/*metabolism
;
Male
;
Organ Size/drug effects
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Drug/*genetics
;
Research Support, Non-U.S. Gov't
;
Sodium-Hydrogen Antiporter/*genetics
;
Sodium-Potassium-Chloride Symporters/*genetics
;
Symporters/*genetics
;
Tetrazoles/*pharmacology