4.Chinese expert consensus on metformin in clinical practice: 2023 update.
Chinese Journal of Internal Medicine 2023;62(6):619-630
Metformin has robust glucose-lowering effects and multiple benefits beyond hypoglycemic effects. It can also be used in combination with various hypoglycemic drugs and is cost effective. In the absence of the strong indications of glucagon like peptide-1 receptor agonist (GLP-1RA) or sodium glucose cotransporter 2 inhibitor (SGLT2i) for cardiorenal protection, metformin should be used as the first-line pharmacological treatment for newly diagnosed type 2 diabetes and the basic drug for the combined treatment of hypoglycemic drugs. Metformin does not increase the risk of liver and kidney function damage, but patients with renal dysfunction should adjust the dosage of metformin based on estimated glomerular filtration rate (eGFR) levels. Moreover, the correct use of metformin does not increase the risk of lactic acidosis. Because long-term use of metformin is associated with a decrease in vitamin B12 levels, patients with insufficient intake or absorption of vitamin B12 should be regularly monitored and appropriately supplemented with vitamin B12. In view of the new progress made in the basic and clinical research related to metformin, the consensus updating expert group updated the consensus on the basis of the Expert Consensus on the Clinical Application of Metformin (2018 Edition).
Humans
;
Consensus
;
Diabetes Mellitus, Type 2/complications*
;
Hypoglycemic Agents
;
Metformin/therapeutic use*
;
Sodium-Glucose Transporter 2 Inhibitors/therapeutic use*
;
Vitamins/therapeutic use*
;
China
5.Cardioprotective mechanism of SGLT2 inhibitor against myocardial infarction is through reduction of autosis.
Kai JIANG ; Yue XU ; Dandan WANG ; Feng CHEN ; Zizhuo TU ; Jie QIAN ; Sheng XU ; Yixiang XU ; John HWA ; Jian LI ; Hongcai SHANG ; Yaozu XIANG
Protein & Cell 2022;13(5):336-359
Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular mortality in patients with diabetes mellitus but the protective mechanism remains elusive. Here we demonstrated that the SGLT2 inhibitor, Empagliflozin (EMPA), suppresses cardiomyocytes autosis (autophagic cell death) to confer cardioprotective effects. Using myocardial infarction (MI) mouse models with and without diabetes mellitus, EMPA treatment significantly reduced infarct size, and myocardial fibrosis, thereby leading to improved cardiac function and survival. In the context of ischemia and nutritional glucose deprivation where autosis is already highly stimulated, EMPA directly inhibits the activity of the Na+/H+ exchanger 1 (NHE1) in the cardiomyocytes to regulate excessive autophagy. Knockdown of NHE1 significantly rescued glucose deprivation-induced autosis. In contrast, overexpression of NHE1 aggravated the cardiomyocytes death in response to starvation, which was effectively rescued by EMPA treatment. Furthermore, in vitro and in vivo analysis of NHE1 and Beclin 1 knockout mice validated that EMPA's cardioprotective effects are at least in part through downregulation of autophagic flux. These findings provide new insights for drug development, specifically targeting NHE1 and autosis for ventricular remodeling and heart failure after MI in both diabetic and non-diabetic patients.
Animals
;
Diabetes Mellitus
;
Diabetes Mellitus, Type 2/drug therapy*
;
Glucose
;
Humans
;
Mice
;
Myocardial Infarction/metabolism*
;
Sodium-Glucose Transporter 2 Inhibitors/therapeutic use*
;
Ventricular Remodeling
6.Effects of SGLT2i on 24-hour ambulatory blood pressure in patients with type 2 diabetes complicating hypertension: a meta-analysis.
Li TIAN ; Qiong Ying WANG ; Run Min SUN ; Miao Miao QI ; Ya Xin LI ; Xin GAO ; Li Qiong ZHANG ; Xue MA ; Hang SHI ; Jing YU ; Feng BAI
Chinese Journal of Cardiology 2021;49(10):1000-1011
Objective: To analyze the effects of different types of sodium-glucose cotransporter 2 inhibitors (SGLT2i) on 24-hour ambulatory blood pressure in patients with type 2 diabetes mellitus and hypertension. Method: In this meta-analysis, we searched for randomized controlled trials on the effect of SGLT2i on 24-hour ambulatory blood pressure in patients with type 2 diabetes and hypertension. Three databases, namely PubMed, Web of Science and Cochrane Library, were searched. The search was organized on the concept of 3 conceptual groups: the first group contained terms used to describe SGLT2i, the second group contained terms related to blood pressure, and the third group contained terms used to describe randomized controlled trials. The search time was from the establishment of the database to December 2020. The inclusion and exclusion criteria were formulated in accordance with the requirements of the Cochrane systematic review. According to whether the heterogeneity of the study was significant or not, a random effect model or a fixed effect model were used to conduct the analysis on the impact of different types of SGLT2i on 24-hour ambulatory blood pressure and day and night blood pressure in patients with type 2 diabetes and hypertension. Further subgroup analysis was performed to define potential factors, which might lead to clinical heterogeneity. Results: Seven clinical trials were finally included. The result of the meta-analysis showed that compared with placebo group, SGLT2i could reduce the 24-hour dynamic systolic blood pressure of patients with type 2 diabetes and hypertension by 4.36 mmHg (1 mmHg=0.133 kPa). Reduction was 4.59, 3.74, 5.06, and 3.64 mmHg by canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin respectively; SGLT2i could reduce the 24-hour dynamic diastolic blood pressure of patients with type 2 diabetes and hypertension by 2.20 mmHg, and the reduction was 2.30, 1.22, 2.00, and 2.69 mmHg by canagliflozin, dapagliflozin, empagliflozin and ertugliflozin respectively. SGLT2i could reduce the daytime systolic blood pressure of patients with type 2 diabetes and hypertension by 5.25 mmHg, and reduction was 5.38, 4.87, 6.00, and 4.37 mmHg by canagliflozin, dapagliflozin, empagliflozin and ertugliflozin, respectively. Simultaneously, SGLT2i could reduce the diastolic blood pressure of patients with type 2 diabetes and hypertension by 2.62 mmHg, and the reduction was 2.56, 2.47, and 2.80 mmHg by canagliflozin, empagliflozin and ertugliflozin, respectively. SGLT2i could reduce the nighttime systolic blood pressure of patients with type 2 diabetes and hypertension by 3.62 mmHg, and the reduction was 2.09, 2.06, 3.92, and 2.45 mmHg by canagliflozin, dapagliflozin, empagliflozin and ertugliflozin, respectively. At the same time, SGLT2i could reduce the nighttime diastolic blood pressure of patients with type 2 diabetes and hypertension by 1.60 and 1.51 mmHg, the reduction was 1.53 and 2.58 mmHg by canagliflozin, empagliflozin and ertugliflozin, respectively. Conclusion: SGLT2i can reduce 24-hour ambulatory blood pressure in patients with type 2 diabetes and hypertension.
Blood Pressure
;
Blood Pressure Monitoring, Ambulatory
;
Diabetes Mellitus, Type 2/drug therapy*
;
Humans
;
Hypertension/drug therapy*
;
Sodium-Glucose Transporter 2 Inhibitors/therapeutic use*
7.Efficacy and Safety of SGLT2 Inhibitors in Patients with Type 1 Diabetes: A Meta-analysis of Randomized Controlled Trials.
Yingying YANG ; Hui PAN ; Bo WANG ; Shi CHEN ; Huijuan ZHU
Chinese Medical Sciences Journal 2017;32(1):22-27
Objective To assess the efficiency and safety of a novel sodium-glucose co-transporter 2 (SGLT2) inhibitor-SGLT2 inhibitors, in combination with insulin for type 1 diabetes mellitus (T1DM). Methods We searched Medline, Embase, and the Cochrane Collaboration Library to identify the eligible studies published between January 2010 and July 2016 without restriction of language. The Food and Drug Administration (FDA) data and ClinicalTrials (http://www.clinicaltrials.gov) were also searched. The included studies met the following criteria: randomized controlled trials; T1DM patients aged between 18 and 65 years old; patients were treated with insulin plus SGLT2 inhibitors for more than 2 weeks; patients' glycosylated hemoglobin (HbA1c) levels were between 7% and 12%. The SGLT2 inhibitors group was treated with SGLT2 inhibitors plus insulin, and the placebo group received placebo plus insulin treatment. The outcomes should include one of the following items: fasting blood glucose, HbA1c, glycosuria, or adverse effects. Data were analyzed by two physicians independently. The risk of bias was evaluated by using the Cochrane Collaboration's Risk of Bias tool and heterogeneity among studies was assessed using Chi-square test. Random effect model was used to analyze the treatment effects with Revman 5.3.Results Three trials including 178 patients were enrolled. As compared to the placebo group, SGLT2 inhibitor absolutely decreased fasting blood glucose [mean differences (MD) -2.47 mmol/L, 95% confidence interval (CI) -3.65 to -1.28, P<0.001] and insulin dosage (standardized MD -0.75 U, 95%CI -1.17 to -0.33, P<0.001). SGLT2 inhibitors could also increase the excretion of urine glucose (MD 131.09 g/24 h, 95%CI 91.79 to 170.39, P<0.001). There were no significant differences in the incidences of hyperglycemia [odds ratio (OR) 1.82, 95%CI 0.63 to 5.29, P=0.27], urinary tract infection (OR 0.95, 95%CI 0.19 to 4.85, P=0.95), genital tract infection (OR 0.27, 95%CI 0.01 to 7.19, P=0.43), and diabetic ketoacidosis (OR 6.03, 95%CI 0.27 to 135.99, P=0.26) between the two groups.Conclusion SGLT2 inhibitors combined with insulin might be an efficient and safe treatment modality for T1DM patients.
Adolescent
;
Adult
;
Aged
;
Blood Glucose
;
metabolism
;
Diabetes Mellitus, Type 1
;
blood
;
drug therapy
;
Drug Therapy, Combination
;
methods
;
Fasting
;
blood
;
Female
;
Glycated Hemoglobin A
;
metabolism
;
Humans
;
Hypoglycemic Agents
;
adverse effects
;
therapeutic use
;
Insulin
;
adverse effects
;
therapeutic use
;
Male
;
Middle Aged
;
Randomized Controlled Trials as Topic
;
Sodium-Glucose Transporter 2
;
antagonists & inhibitors