3.Research status of genodermatoses in China.
Xue-Jun ZHANG ; Jian-jun CHEN ; Min GAO
Acta Academiae Medicinae Sinicae 2005;27(3):408-414
Among over 300 genodernatoses, causative genes have been identified in 170 monogenetic diseases, while gene mapping has been performed in over 100 monogenetic and polygenctic skin diseases. Researches in genodermatoses has rapidly advanced in China in recent ten years. The causative genes involved in multiple familial trichoepithelioma and primary erythermalgia have been found. Two independent genome-wide scans with DNA markers have been performed to detect genetic linkage related to psoriasis and vitiligo. In this review article, we summarize these most recent findings.
Erythromelalgia
;
genetics
;
HLA Antigens
;
genetics
;
Humans
;
NAV1.7 Voltage-Gated Sodium Channel
;
Proteins
;
genetics
;
Psoriasis
;
genetics
;
Sodium Channels
;
genetics
;
Vitiligo
;
genetics
4.The Genotype and Clinical Phenotype of Korean Patients with Familial Hypokalemic Periodic Paralysis.
June Bum KIM ; Man Ho KIM ; Soon Ju LEE ; Dae Joong KIM ; Byung Churl LEE
Journal of Korean Medical Science 2007;22(6):946-951
Familial hypokalemic periodic paralysis (HOPP) is a rare autosomal-dominant disease characterized by reversible attacks of muscle weakness occurring with episodic hypokalemia. Mutations in the skeletal muscle calcium (CACNA1S) and sodium channel (SCN4A) genes have been reported to be responsible for familial HOPP. Fifty-one HOPP patients from 20 Korean families were studied to determine the relative frequency of the known mutations and to specify the clinical features associated with the identified mutations. DNA analysis identified known mutations in 12 families: 9 (75%) were linked to the CACNA1S gene and 3 (25%) to the SCN4A gene. The Arg528His mutation in the CACNA1S gene was found to be predominant in these 12 families. Additionally, we have detected one novel silent exonic mutation (1950C>T) in the SCN4A gene. As for a SCN4A Arg669His mutation, incomplete penetrance in a woman was observed. Characteristic clinical features were observed both in patients with and without mutations. This study presents comprehensive data on the genotype and phenotype of Korean families with HOPP.
Adolescent
;
Adult
;
Calcium Channels/*genetics
;
Child
;
Child, Preschool
;
Genotype
;
Humans
;
Hypokalemic Periodic Paralysis/*genetics
;
Infant
;
*Mutation
;
Phenotype
;
Sodium Channels/*genetics
5.Progress in molecular genetics of epilepsy.
Chinese Journal of Medical Genetics 2002;19(6):505-507
Epilepsy is a group of disorders characterized by recurrent seizures. The etiologies of idiopathic epilepsy commonly have a genetic basis. Gene mutations causing several of the inherited epilepsies have been mapped. In this review, the authors summarize the available information on the genetic basis of human epilepsies and epilepsy syndromes, emphasizing how genetic defects may correlate with the pathophysiological mechanisms of brain hyperexcitability and gene defects can lead to epilepsy by altering multiple and diverse aspects of neuronal function.
Epilepsy
;
genetics
;
Humans
;
KCNQ2 Potassium Channel
;
Mutation
;
NAV1.1 Voltage-Gated Sodium Channel
;
Nerve Tissue Proteins
;
genetics
;
Potassium Channels
;
genetics
;
Potassium Channels, Voltage-Gated
;
Receptors, Nicotinic
;
genetics
;
Research
;
trends
;
Research Design
;
Sodium Channels
;
genetics
;
Voltage-Gated Sodium Channel beta-1 Subunit
6.Advances in the studies on the molecular and genetic aspects of epilepsy.
Xu WANG ; Tao WANG ; Ming-xiong YUAN ; Mu-gen LIU ; Qing WANG
Acta Academiae Medicinae Sinicae 2005;27(3):388-393
Epilepsy is one of the most common and debilitating neurological diseases that affects more than 40 million people worldwide. Genetic factors contribute to the pathogenesis of epilepsy. Molecular genetic studies have identified 15 disease-causing genes for epilepsy. The majority of the genes encode ion channels, including voltage-gated potassium channels KCNQ2 and KCNQ3, sodium channels SCN1A, SCN2A, and SCN1B, chloride channels CLCN2, and ligand-gated ion channels CHRNA4, CHRNB2, GABRG2, and GABRA1. Interestingly, non-ion channel genes have also been identified as epilepsy genes, and these genes include G-protein-coupled receptor MASS1/VLGR1, GM3 synthase, and proteins with unknown functions such as LGI1, NHLRC1, and EFHC1. These studies make genetic testing possible in some patients, and further characterization of the identified epilepsy genes may lead to the development of new drugs and new treatments for patients with epilepsy.
Chloride Channels
;
genetics
;
Epilepsies, Myoclonic
;
genetics
;
Epilepsy
;
genetics
;
Epilepsy, Absence
;
genetics
;
Humans
;
KCNQ2 Potassium Channel
;
genetics
;
KCNQ3 Potassium Channel
;
genetics
;
NAV1.1 Voltage-Gated Sodium Channel
;
NAV1.2 Voltage-Gated Sodium Channel
;
Nerve Tissue Proteins
;
genetics
;
Sodium Channels
;
genetics
7.Long QT syndrome gene diagnosis by haplotype analysis.
Jiang-fang LIAN ; Chang-cong CUI ; Xiao-lin XUE ; Chen HUANG ; Han-bing CUI ; Hai-zhu ZHANG
Chinese Journal of Medical Genetics 2004;21(3):272-273
OBJECTIVEThree long QT syndrome(LQTS) pedigrees were brought together for genetic diagnosis by using short tandem repeat(STR) markers.
METHODSGenomic DNA was extracted from blood samples. STR markers (D7S1824, D7S2439, D7S483, D3S1298, D3S1767, D3S3521) in or spanning the HERG and SCN5A gene were amplified; the haplotype analysis for LQTS was performed.
RESULTSClinical diagnosis showed that 15 are LQTS patients (3 died) and 11 are probable patients. Linkage analysis showed that LQTS patients are linked with the SCN5A gene in family 1, HERG is linked with the disease in family 2 and 3. Fourteen gene carriers were identified, 2 patients and 7 probable patients were excluded.
CONCLUSIONLinkage analysis using STR markers can serve as useful tool for presymptomatic diagnosis.
ERG1 Potassium Channel ; Ether-A-Go-Go Potassium Channels ; Female ; Genetic Linkage ; Haplotypes ; Humans ; Long QT Syndrome ; genetics ; Male ; NAV1.5 Voltage-Gated Sodium Channel ; Pedigree ; Potassium Channels ; genetics ; Potassium Channels, Voltage-Gated ; Sodium Channels ; genetics ; Tandem Repeat Sequences
8.Role of voltage-sodium channels in neuropathic pain.
Wen-Ting SHOU ; Shi-Hong ZHANG ; Zhong CHEN
Journal of Zhejiang University. Medical sciences 2011;40(2):217-221
Voltage-gated sodium channels are critical for the generation and conduction of nerve impulses. Recent studies show that in primary sensory neurons, the expression and dynamic regulation of several sodium channel subtypes play important roles in neuropathic pain. A number of SCN9A (encoding Nav1.7) gene point mutations are related with human genetic pain disorders. Transgenic and specific knockout techniques have revealed that Nav1.3, Nav1.8, Nav1.9 are important for the development and maintenance of neuropathic pain condition. Specific blockers of these sodium channels have been demonstrated to be effective in alleviating allodynia and hyperalgesia. Here we reviewed the roles of sodium channels in neuropathic pain, which may be applicable for the development of new drugs with enhanced efficacy for neuropathic pain treatment.
Animals
;
Humans
;
Neuralgia
;
genetics
;
metabolism
;
physiopathology
;
Neurons
;
metabolism
;
physiology
;
Sodium Channels
;
genetics
;
metabolism
;
physiology
9.Novel SCN5A gene mutations associated with Brugada syndrome: V95I, A1649V and delF1617.
Peng LIANG ; Wen-ling LIU ; Da-yi HU ; Cui-lan LI ; Wu-hua TAO ; Lei LI
Chinese Journal of Cardiology 2006;34(7):616-619
OBJECTIVEBrugada syndrome is an inherited channelopathy that characterized by ST-segment elevation in the right precordial lead (V(1)-V(3)) on the electrocardiogram with or without right bundle branch block and related with high risk of sudden cardiac death and structurally normal hearts. The first and only gene linked to this disease is SCN5A, a gene encodes for alpha subunit of the cardiac sodium channel. The objective of this study is to explore SCN5A gene mutations in Chinese patients with Brugada syndrome.
METHODSFour patients diagnosed as Brugada syndrome and nine patients with suspected Brugada syndrome were chosen for the study. The exons in the functional regions of SCN5A gene were amplified with polymerase chain reaction and the amplified products were sequenced with Sanger method. If a mutation was identified, patient's family members were also screened.
RESULTSTwo heterozygous mutations were found in one family diagnosed as Brugada syndrome. One missense mutation was a G-->A transition in the first nucleotide of codon 95 in SCN5A gene exon 3, which was predicted to result in substitution of Valine with Isoleucine (V95I). The other missense mutation was a C-->T transition in the second nucleotide of codon 1649 in SCN5A gene exon 28, which was predicted to result in substitution of Alanine with Valine (A1649V). A heterozygous mutation was identified in one family suspected to have the disease. The mutation was a three nucleotides (TCT) deletion that caused Phenylalanine deletion in codon 1617 in SCN5A gene exon 28. The three mutations were not detected in 100 control chromosomes.
CONCLUSIONSMutation in SCN5A gene is one of the causes of Brugada syndrome in Chinese. Three novel SCN5A gene mutations were identified in Chinese with Brugada syndrome, which expands the spectrum of SCN5A mutations associated with the disease.
Adolescent ; Adult ; Aged ; Brugada Syndrome ; genetics ; Case-Control Studies ; Exons ; genetics ; Humans ; Male ; Middle Aged ; Muscle Proteins ; genetics ; Mutation ; NAV1.5 Voltage-Gated Sodium Channel ; Sodium Channels ; genetics