1.Experimental study on promotion of skin radiation damage repair by icarin via HIF-2α/VEGF/Notch pathway to enhance the paracrine function of adipose-derived stem cells.
Yuer ZUO ; Shuangyi LI ; Siyu TAN ; Xiaohao HU ; Zhou LI ; Haoxi LI
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):881-890
OBJECTIVE:
To investigate the effectiveness and preliminary mechanisms of icariin (ICA) in enhancing the reparative effects of adipose-derived stem cells (ADSCs) on skin radiation damagies in rats.
METHODS:
Twelve SPF-grade Sprague Dawley rats [body weight (220±10) g] were subjected to a single dose of 10 Gy X-ray irradiation on a 1.5 cm×1.5 cm area of their dorsal skin, with a dose rate of 200 cGy/min to make skin radiation damage model. After successful modelling, the rats were randomly divided into 4 groups ( n=3), and on day 2, the corresponding cells were injected subcutaneously into the irradiated wounds: group A received 0.1 mL of rat ADSCs (1×10 7cells/mL), group B received 0.1 mL of rat ADSCs (1×10 7cells/mL)+1 μmol/L ICA (0.1 mL), group C received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a hypoxia-inducible factor 2α (HIF-2α) inhibitor+1 μmol/L ICA (0.1 mL), and group D received 0.1 mL of rat ADSCs (1×10 7cells/mL) pretreated with a Notch1 inhibitor+1 μmol/L ICA (0.1 mL). All treatments were administered as single doses. The skin injury in the irradiated areas of the rats was observed continuously from day 1 to day 7 after modelling. On day 28, the rats were sacrificed, and skin tissues from the irradiated areas were harvested for histological examination (HE staining and Masson staining) to assess the repair status and for quantitative collagen content detection. Immunohistochemical staining was performed to detect CD31 expression, while Western blot and real-time fluorescence quantitative PCR (qRT-PCR) were used to measure the protein and mRNA relative expression levels of vascular endothelial growth factor (VEGF), platelet-derived growth factor BB (PDGF-BB), fibroblast growth factor 2 (FGF-2), interleukin 10 (IL-10), transforming growth factor β (TGF-β), HIF-2α, and Notch1, 2, and 3.
RESULTS:
All groups exhibited skin ulcers and redness after irradiation. On day 3, exudation of tissue fluid was observed in all groups. On day 7, group B showed significantly smaller skin injury areas compared to the other 3 groups. On day 28, histological examination revealed that the epidermis was thickened and the dermal fibers were slightly disordered with occasional inflammatory cell aggregation in group A. In group B, the epidermis appeared more normal, the dermal fibers were more orderly, and there was an increase in new blood vessels without significant inflammatory cell aggregation. In contrast, groups C and D showed significantly increased epidermal thickness, disordered and disrupted dermal fibers. Group B had higher collagen fiber content than the other 3 groups, and group D had lower content than group A, with significant differences ( P<0.05). Immunohistochemical staining showed that group B had significantly higher CD31 expression than the other 3 groups, while groups C and D had lower expression than group A, with significant differences ( P<0.05). Western blot and qRT-PCR results indicated that group B had significantly higher relative expression levels of VEGF, PDGF-BB, FGF-2, IL-10, TGF-β, HIF-2α, and Notch1, 2, and 3 proteins and mRNAs compared to the other 3 groups ( P<0.05).
CONCLUSION
ICA may enhance the reparative effects of ADSCs on rat skin radiation damage by promoting angiogenesis and reducing inflammatory responses through the HIF-2α-VEGF-Notch signaling pathway.
Animals
;
Rats, Sprague-Dawley
;
Skin/pathology*
;
Rats
;
Vascular Endothelial Growth Factor A/genetics*
;
Basic Helix-Loop-Helix Transcription Factors/genetics*
;
Signal Transduction
;
Flavonoids/pharmacology*
;
Adipose Tissue/cytology*
;
Stem Cells/cytology*
;
Receptors, Notch/metabolism*
;
Radiation Injuries, Experimental/metabolism*
;
Wound Healing/drug effects*
;
Male
2.Salvianolic Acid B Exerts Antiphotoaging Effect on Ultraviolet B-Irradiated Human Keratinocytes by Alleviating Oxidative Stress via SIRT1 Protein.
Qiao-Ju ZHANG ; Xi LUO ; Yu-Wen ZHENG ; Jun-Qiao ZHENG ; Xin-Ying WU ; Shu-Mei WANG ; Jun SHI
Chinese journal of integrative medicine 2025;31(11):1021-1028
OBJECTIVE:
To explore the anti-photoaging properties of salvianolic acid B (Sal B).
METHODS:
The optimal photoaging model of human immortalized keratinocytes (HaCaT cells) were constructed by expose to ultraviolet B (UVB) radiation. The cells were divided into control, model and different concentrations of Sal B groups. Cell viability was measured via cell counting kit-8. Subsequently, the levels of oxidative stress, including reactive oxygen species (ROS), hydroxyproline (Hyp), catalase (CAT), and glutathione peroxidase (GSH-Px) were detected using the relevant kits. Silent information regulator 1 (SIRT1) protein level was detected using Western blot. The binding pattern of Sal B and SIRT1 was determined via molecular docking.
RESULTS:
Sal B significantly increased the viability of UVB-irradiated HaCaT cells (P<0.05 or P<0.01). Sal B effectively scavenged the accumulation of ROS induced by UVB (P<0.05 or P<0.01). In addition, Sal B modulated oxidative stress by increasing the intracellular concentrations of Hyp and CAT and the activity of GSH-Px (P<0.05 or P<0.01). The Western blot results revealed a substantial increase in SIRT1 protein levels following Sal B administration (P<0.05). Moreover, Sal B exhibited good binding affinity toward SIRT1, with a docking energy of -7.5 kCal/mol.
CONCLUSION
Sal B could improve the repair of photodamaged cells by alleviating cellular oxidative stress and regulating the expression of SIRT1 protein.
Humans
;
Sirtuin 1/metabolism*
;
Ultraviolet Rays
;
Oxidative Stress/radiation effects*
;
Keratinocytes/metabolism*
;
Molecular Docking Simulation
;
Benzofurans/pharmacology*
;
Skin Aging/radiation effects*
;
Reactive Oxygen Species/metabolism*
;
Cell Survival/radiation effects*
;
HaCaT Cells
;
Hydroxyproline/metabolism*
;
Glutathione Peroxidase/metabolism*
;
Catalase/metabolism*
;
Depsides
3.A standardized extract of Asparagus officinalis stem prevents reduction in heat shock protein 70 expression in ultraviolet-B-irradiated normal human dermal fibroblasts: an in vitro study.
Ken SHIRATO ; Jun TAKANARI ; Tomoko KODA ; Takuya SAKURAI ; Junetsu OGASAWARA ; Hideki OHNO ; Takako KIZAKI
Environmental Health and Preventive Medicine 2018;23(1):40-40
BACKGROUND:
Heat shock protein 70 (HSP70) exhibits protective effects against ultraviolet (UV)-induced premature skin aging. A standardized extract of Asparagus officinalis stem (EAS) is produced as a novel and unique functional food that induces HSP70 cellular expression. To elucidate the anti-photoaging potencies of EAS, we examined its effects on HSP70 expression levels in UV-B-irradiated normal human dermal fibroblasts (NHDFs).
METHODS:
NHDFs were treated with 1 mg/mL of EAS or dextrin (vehicle control) prior to UV-B irradiation (20 mJ/cm). After culturing NHDFs for different time periods, HSP70 mRNA and protein levels were analyzed using real-time polymerase chain reaction and western blotting, respectively.
RESULTS:
UV-B-irradiated NHDFs showed reduced HSP70 mRNA levels after 1-6 h of culture, which were recovered after 24 h of culture. Treatment with EAS alone for 24 h increased HSP70 mRNA levels in the NHDFs, but the increase was not reflected in its protein levels. On the other hand, pretreatment with EAS abolished the UV-B irradiation-induced reduction in HSP70 expression at both mRNA and protein levels. These results suggest that EAS is capable to preserve HSP70 quantity in UV-B-irradiated NHDFs.
CONCLUSIONS
EAS exhibits anti-photoaging potencies by preventing the reduction in HSP70 expression in UV-irradiated dermal fibroblasts.
Asparagus Plant
;
Cells, Cultured
;
Female
;
Fibroblasts
;
drug effects
;
radiation effects
;
HSP70 Heat-Shock Proteins
;
biosynthesis
;
Humans
;
Middle Aged
;
Plant Extracts
;
pharmacology
;
Polymerase Chain Reaction
;
Skin
;
drug effects
;
radiation effects
;
Skin Aging
;
drug effects
;
radiation effects
;
Telomere
;
metabolism
;
Ultraviolet Rays
;
adverse effects
4.Ultraviolet A Enhances Cathepsin L Expression and Activity via JNK Pathway in Human Dermal Fibroblasts.
Qing-Fang XU ; Yue ZHENG ; Jian CHEN ; Xin-Ya XU ; Zi-Jian GONG ; Yun-Fen HUANG ; Chun LU ; Howard I MAIBACH ; Wei LAI
Chinese Medical Journal 2016;129(23):2853-2860
BACKGROUNDCathepsin L (CatL) is a cysteine protease with strong matrix degradation activity that contributes to photoaging. Mannose phosphate-independent sorting pathways mediate ultraviolet A (UVA)-induced alternate trafficking of CatL. Little is known about signaling pathways involved in the regulation of UVA-induced CatL expression and activity. This study aims to investigate whether a single UVA irradiation affects CatL expression and activity and whether mitogen-activated protein kinase (MAPK)/activator protein-1 (AP-1) pathway is involved in the regulation of UVA-induced CatL expression and activity in human dermal fibroblasts (HDFs).
METHODSPrimary HDFs were exposed to UVA. Cell proliferation was determined by a cell counting kit. UVA-induced CatL production and activity were studied with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), Western blotting, and fluorimetric assay in cell lysates collected on three consecutive days after irradiation. Time courses of UVA-activated JNK and p38MAPK signaling were examined by Western blotting. Effects of MAPK inhibitors and knockdown of Jun and Fos on UVA-induced CatL expression and activity were investigated by RT-PCR, Western blotting, and fluorimetric assay. Data were analyzed by one-way analysis of variance.
RESULTSUVA significantly increased CatL gene expression, protein abundance, and enzymatic activity for three consecutive days after irradiation (F = 83.11, 56.14, and 71.19, respectively; all P < 0.05). Further investigation demonstrated phosphorylation of JNK and p38MAPK activated by UVA. Importantly, inactivation of JNK pathway significantly decreased UVA-induced CatL expression and activity, which were not affected by p38MAPK inhibition. Moreover, knockdown of Jun and Fos significantly attenuated basal and UVA-induced CatL expression and activity.
CONCLUSIONSUVA enhances CatL production and activity in HDFs, probably by activating JNK and downstreaming AP-1. These findings provide a new possible molecular approach for antiphotoaging therapy.
Anthracenes ; pharmacology ; Cathepsin L ; metabolism ; Cells, Cultured ; Child ; Child, Preschool ; Enzyme Inhibitors ; pharmacology ; Extracellular Signal-Regulated MAP Kinases ; antagonists & inhibitors ; Fibroblasts ; cytology ; drug effects ; metabolism ; radiation effects ; Humans ; Imidazoles ; pharmacology ; MAP Kinase Signaling System ; drug effects ; radiation effects ; Oncogene Proteins v-fos ; genetics ; metabolism ; Proto-Oncogene Proteins c-jun ; genetics ; metabolism ; Pyridines ; pharmacology ; Skin ; cytology ; Ultraviolet Rays
5.Expressiona of c-Jun and collagens I and III in cultured human skin fibroblasts are affected by infrared ray radiation.
Ping LIU ; Rong-Li YANG ; Hui SU ; Lin-Li LI ; Jian-Wen SONG ; Ning LU ; Yu-Ze LIU
Journal of Southern Medical University 2016;36(2):163-169
OBJECTIVETo observe the effect of solar infrared ray (IR) radiation on the expressions of c-Jun and collagens I and III in cultured human skin fibroblasts (HSFs) and explore the molecular mechanism by which IR radiation causes aging of the skin.
METHODSPrimarily cultured HSFs exposed to IR radiation were examined for changes of the cell viability with MTT assay. The mRNA and protein expressions of c-Jun and collagens I and III was detected with real-time quantitative PCR and immunocytochemistry.
RESULTSMTT assay showed that IR irradiation caused inhibition of cell proliferation compared with the control cells. The mRNA and protein expression of collagen I was decreased significantly by IR irradiation with the increase of the irradiation dose (P<0.01). HSFs irradiated by IR for 12 h showed a dose-dependent reduction of the expression of collagen type III mRNA and protein (P<0.05, P<0.01), but the expression increased dose-dependently in response to IR exposure for 24 h (P<0.05 or 0.01). IR irradiation enhanced the mRNA and protein expression of c-Jun in a dose-dependence manner (P<0.05 or 0.01).
CONCLUSIONSIR irradiation can increase the expression of c-Jun, inhibit the expression of collagen I, and cause disturbance in collagen III expression in human skin fibroblasts, which may be one of the mechanism of IR radiation to initiate and promote skin photoaging.
Cell Proliferation ; Cell Survival ; Cells, Cultured ; Collagen Type I ; metabolism ; Collagen Type III ; metabolism ; Fibroblasts ; metabolism ; radiation effects ; Humans ; Infrared Rays ; Proto-Oncogene Proteins c-jun ; metabolism ; RNA, Messenger ; metabolism ; Skin ; cytology ; Skin Aging ; Ultraviolet Rays
6.Advance in research on causative genes of xeroderma pigmentosum and related diseases.
Zhonghui SUN ; Yunyi GUO ; Jia ZHANG ; Yin ZHUANG ; Ming LI ; Zhirong YAO
Chinese Journal of Medical Genetics 2016;33(5):708-712
Ultraviolet light(UV)-sensitive disorders refer to a group of diseases due to damages to the nucleotide excision repair mechanism which cannot effectively repair DNA damage caused by ultraviolet radiation. The inheritance pattern of such diseases, mainly including xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy, is autosomal recessive and known to involve 13 genes. As proteins encoded by such genes are involved in DNA repair and transcription pathways. There is overlap between the symptoms of such diseases, and their genotype - phenotype correlations are quite complex. To facilitate genetic and prenatal diagnosis for such diseases, a summary of the research progress is provided, which mainly focused on mutation research and genotype - phenotype correlation studies. We also propose a strategy for their genetic diagnosis based on recent findings of our group.
Biomedical Research
;
methods
;
trends
;
Cockayne Syndrome
;
genetics
;
DNA Damage
;
DNA Repair
;
genetics
;
Genetic Predisposition to Disease
;
genetics
;
Humans
;
Skin
;
metabolism
;
pathology
;
radiation effects
;
Trichothiodystrophy Syndromes
;
genetics
;
Ultraviolet Rays
;
Xeroderma Pigmentosum
;
genetics
7.Platelet-Rich Fibrin Lysate Can Ameliorate Dysfunction of Chronically UVA-Irradiated Human Dermal Fibroblasts.
Yohanes Widodo WIROHADIDJOJO ; Arief BUDIYANTO ; Hardyanto SOEBONO
Yonsei Medical Journal 2016;57(5):1282-1285
To determine whether platelet-rich fibrin lysate (PRF-L) could restore the function of chronically ultraviolet-A (UVA)-irradiated human dermal fibroblasts (HDFs), we isolated and sub-cultured HDFs from six different human foreskins. HDFs were divided into two groups: those that received chronic UVA irradiation (total dosages of 10 J cm-2) and those that were not irradiated. We compared the proliferation rates, collagen deposition, and migration rates between the groups and between chronically UVA-irradiated HDFs in control and PRF-L-treated media. Our experiment showed that chronic UVA irradiation significantly decreased (p<0.05) the proliferation rates, migration rates, and collagen deposition of HDFs, compared to controls. Compared to control media, chronically UVA-irradiated HDFs in 50% PRF-L had significantly increased proliferation rates, migration rates, and collagen deposition (p<0.05), and the migration rates and collagen deposition of chronically UVA-irradiated HDFs in 50% PRF-L were equal to those of normal fibroblasts. Based on this experiment, we concluded that PRF-L is a good candidate material for treating UVA-induced photoaging of skin, although the best method for its clinical application remains to be determined.
Blood Platelets/*cytology/*metabolism
;
Cell Movement/radiation effects
;
Cell Proliferation/radiation effects
;
Cells, Cultured
;
Collagen/metabolism
;
Fibrin/*metabolism
;
Fibroblasts/*cytology/metabolism/*radiation effects
;
Humans
;
Skin/*cytology
;
Time Factors
;
Ultraviolet Rays/*adverse effects
8.beta-irradiation (166Ho patch)-induced skin injury in mini-pigs: effects on NF-kappaB and COX-2 expression in the skin.
Joong Sun KIM ; Kyung Jin RHIM ; Won Seok JANG ; Sun Joo LEE ; Yeonghoon SON ; Seung Sook LEE ; Sunhoo PARK ; Sang Moo LIM
Journal of Veterinary Science 2015;16(1):1-9
In the present study, the detrimental effect of beta-emission on pig skin was evaluated. Skin injury was modeled in mini-pigs by exposing the animals to 50 and 100 Gy of beta-emission delivered by 166Ho patches. Clinicopathological and immunohistochemical changes in exposed skin were monitored for 18 weeks after beta-irradiation. Radiation induced desquamation at 2~4 weeks and gradual repair of this damage was evident 6 weeks after irradiation. Changes in basal cell density and skin depth corresponded to clinically relevant changes. Skin thickness began to decrease 1 week after irradiation, and the skin was thinnest 4 weeks after irradiation. Skin thickness increased transiently during recovery from irradiation-induced skin injury, which was evident 6~8 weeks after irradiation. Epidermal expression of nuclear factor-kappa B (NF-kappaB) differed significantly between the untreated and irradiated areas. One week after irradiation, cyclooxygenase-2 (COX-2) expression was mostly limited to the basal cell layer and scattered among these cells. High levels of COX-2 expression were detected throughout the full depth of the skin 4 weeks after irradiation. These findings suggest that NF-kappaB and COX-2 play roles in epidermal cell regeneration following beta-irradiation of mini-pig skin.
Animals
;
Cyclooxygenase 2/genetics/*metabolism
;
*Holmium
;
Male
;
NF-kappa B/genetics/*metabolism
;
Radiation Injuries, Experimental/metabolism/*veterinary
;
Skin/metabolism/*radiation effects
;
Swine
;
Swine, Miniature
9.Effect of laminarin polysaccharide on activity of matrix metalloproteinase in photoaging skin.
Jing LI ; Lu XIE ; Yu QIN ; Wei-Heng LIANG ; Man-Qi MO ; Shi-Liang LIU ; Feng LIANG ; Yao WANG ; Wu TAN ; Yan LIANG
China Journal of Chinese Materia Medica 2013;38(14):2370-2373
OBJECTIVETo study the effect of laminarin polysaccharide (LP) on the activity of matrix metalloproteinase of photoaging skins.
METHODKunming SPF mice were prepared with back hair shaved, and randomly divided into the control group, the model group, the LP low does group (LP-L, 1 mg x kg(-1)), the LP high dose group (LP-H, 5 mg x kg(-1)) and the Vit E (100 mg x kg(-1)) group. They were abdominally injected with drugs twice on a daily basis. Except for the control group, all groups were exposed to ultraviolet rays for 1 hour every day, five times on a weekly basis, with accumulated exposure dose of UVB being 21.60 J x cm(-2) and accumulated exposure dose of UVA being 84.02 J x cm(-2). Eight weeks later, exposed back skins were collected to detect thickness of dermis by HE stain, content of hydroxyproline (Hyp) by chemical colorimetry, and serum MMP-1 and TIMP-1 content by ELISA. In addition, matrix metalloproteinase-1 (MMP-1) mRNA and relative content of tissue inhibitor of metalloproteinase-1 (TIMP1) mRNA was analyzed with Real-time PCR.
RESULTCompared with the model group, the LP-H group could significantly increase the thickness of dermis, skin Hyp content and serum TIMP-1 level, and decrease relative content of MMP-1 mRNA in skin and MMP-1 content in serum.
CONCLUSIONLP can regulate the metabolism of collagen photoaging skins by adjusting the activity of matrix metalloproteinase.
Animals ; Female ; Glucans ; Matrix Metalloproteinase 13 ; biosynthesis ; genetics ; metabolism ; Mice ; Plant Extracts ; chemistry ; pharmacology ; Plants, Medicinal ; chemistry ; Polysaccharides ; chemistry ; pharmacology ; RNA, Messenger ; genetics ; metabolism ; Skin Aging ; drug effects ; physiology ; radiation effects ; Tissue Inhibitor of Metalloproteinase-1 ; biosynthesis ; genetics ; metabolism ; Ultraviolet Rays
10.Role of Regulatory T Cells in Transferable Immunological Tolerance to Bone Marrow Donor in Murine Mixed Chimerism Model.
Il Hee YOON ; Yong Hee KIM ; You Sun KIM ; Jun Seop SHIN ; Chung Gyu PARK
Journal of Korean Medical Science 2013;28(12):1723-1728
Constructing a bone marrow chimera prior to graft transplantation can induce donor-specific immune tolerance. Mixed chimerism containing hematopoietic cells of both recipient- and donor-origin has advantages attributed from low dose of total body irradiation. In this study, we explored the mechanism of mixed chimerism supplemented with depletion of Natural Killer cells. Mixed chimerism with C57BL/6 bone marrow cells was induced in recipient BALB/c mice which were given 450 cGy of gamma-ray irradiation (n = 16). As revealed by reduced proliferation and cytokine production in mixed leukocyte reaction and ELISpot assay (24.6 vs 265.5), the allo-immune response to bone marrow donor was reduced. Furthermore, the induction of transferable immunological tolerance was confirmed by adoptive transfer and subsequent acceptance of C57BL/6 skin graft (n = 4). CD4+FoxP3+ regulatory T cells were increased in the recipient compartment of the mixed chimera (19.2% --> 33.8%). This suggests that regulatory T cells may be therapeutically used for the induction of graft-specific tolerance by mixed chimerism.
Animals
;
Bone Marrow Cells/cytology
;
*Bone Marrow Transplantation
;
Cell Proliferation
;
Chimerism
;
Cytokines/metabolism
;
Gamma Rays
;
Graft Survival
;
*Immune Tolerance
;
Killer Cells, Natural/immunology/radiation effects
;
Leukocytes/immunology/radiation effects
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Models, Animal
;
Skin Transplantation
;
T-Lymphocytes, Regulatory/cytology/*immunology/metabolism
;
Whole-Body Irradiation

Result Analysis
Print
Save
E-mail