1.Promotion of Pink1S Auto-phosphorylation with CK2β.
Journal of Biomedical Engineering 2015;32(5):1056-1060
The aim of this study is to determine the regulatory mechanism of PTEN-induced putative kinase protein 1 short isoform (PINK1S) in cytoplasm. By co-immunoprecipitation (Co-IP) assay, we identified that PINK1S interacted with the beta regulatory subunit of Casein Kinase 2 (CK2β), but not with the catalytic subunits CK2α1 and CK2α2. Furthermore, cells were transfected with PINK1S and CK2β, and then PINK1S was purified by immunoprecipitation. After detecting the phosphorylated proteins by Phos-tag Biotin, we found that CK2β overexpression increased auto-phosphorylation of PINK1S. Finally, we generated CK2β knockdown cell lines by RNA interference. Purified PINK1S from CK2β knockdown cells significantly reduced its auto-phosphorylation compared with control cells. These results suggested that CK2β functions as a regulatory subunit of PINK1S kinase complex promoted its activation by self-phosphorylation.
Biotin
;
Casein Kinase II
;
metabolism
;
Cell Line
;
Gene Knockdown Techniques
;
Humans
;
Phosphorylation
;
Protein Kinases
;
metabolism
;
Pyridines
;
RNA Interference
;
Transfection
2.CK2beta promotes Pink1/Parkin-mediated MIRO1 degradation.
Chenliang ZHANG ; Siyue QIN ; Chang'an JIANG
Journal of Biomedical Engineering 2014;31(6):1310-1315
PTEN-induced putative kinase 1 (PINK1), a Parkinson's disease (PD)-related protein, has two isoforms, the mitochondria-localized full-length isoform PINK1FL and the cytoplasm-localized short isoform PINK1-cyto. Studies have suggested that PINK1FL can selectively accumulate at the surface of damaged mitochondria and cooperate with another Parkinson's Disease-related protein PARKIN to trigger the degradation of MIRO1, a mitochondria trafficking regulator. The functions of PINK1-cyto are, however, not yet clear. To investigate the functions of PINK1-cyto, we expressed different proteins in cultured HEK293 cells by transfecting it with different plasmids, and detected the protein levels by Western blot after expressing for 24 h. We found that in cultured HEK293 cells, PINK1-cyto could also cooperate with PARKIN degrade MIRO1 in the presence of CK23, and the regulatory subunit of Casein Kinase II. Interestingly, this function of CK2P was not dependent on CK2alpha, the catalytic subunit of Casein Kinase II. We also found that CK2P could promote the direct interaction between PINK1-cyto and MIRO1 by immunocoprecipitation analysis. This result suggested that in addition to CK2alpha, CK2beta could also form a kinase complex.
Casein Kinase II
;
metabolism
;
HEK293 Cells
;
Humans
;
Mitochondrial Proteins
;
metabolism
;
Parkinson Disease
;
Protein Kinases
;
metabolism
;
Protein Transport
;
Ubiquitin-Protein Ligases
;
metabolism
;
rho GTP-Binding Proteins
;
metabolism
3.Chief physician SUN Wuquan's experience collection in treating neck-type cervical spondylosis with Tuina therapy
San ZHENG ; Hua XING ; Yiming SHAN ; Yangyang FU ; Yazhou LI ; Jintian CHEN ; Yuxia CHEN ; Siyue QIN ; Jiangshan LI ; Dehua LIN ; Wuquan SUN ; Jue HONG
Journal of Acupuncture and Tuina Science 2023;21(5):398-404
The article analyzes chief physician SUN Wuquan's empirical characteristics in treating neck-type cervical spondylosis:disease differentiation combined with pattern differentiation,emphasizing the assessment of tendons and bones,with DING's Tuina(Chinese therapeutic massage)manipulations and static Gongfa(Qigong exercise)as the predominant treatment,inherits the academic features of DING's Tuina school,"paying equal attention to tendons and bones,putting function first";thus provides a reference for treating neck-type cervical spondylosis with Tuina therapy.
4.REEP1 Preserves Motor Function in SOD1G93A Mice by Improving Mitochondrial Function via Interaction with NDUFA4.
Siyue QIN ; Pan YOU ; Hui YU ; Bo SU
Neuroscience Bulletin 2023;39(6):929-946
A decline in the activities of oxidative phosphorylation (OXPHOS) complexes has been consistently reported in amyotrophic lateral sclerosis (ALS) patients and animal models of ALS, although the underlying molecular mechanisms are still elusive. Here, we report that receptor expression enhancing protein 1 (REEP1) acts as an important regulator of complex IV assembly, which is pivotal to preserving motor neurons in SOD1G93A mice. We found the expression of REEP1 was greatly reduced in transgenic SOD1G93A mice with ALS. Moreover, forced expression of REEP1 in the spinal cord extended the lifespan, decelerated symptom progression, and improved the motor performance of SOD1G93A mice. The neuromuscular synaptic loss, gliosis, and even motor neuron loss in SOD1G93A mice were alleviated by increased REEP1 through augmentation of mitochondrial function. Mechanistically, REEP1 associates with NDUFA4, and plays an important role in preserving the integrity of mitochondrial complex IV. Our findings offer insights into the pathogenic mechanism of REEP1 deficiency in neurodegenerative diseases and suggest a new therapeutic target for ALS.
Mice
;
Animals
;
Amyotrophic Lateral Sclerosis/metabolism*
;
Superoxide Dismutase-1/metabolism*
;
Superoxide Dismutase/metabolism*
;
Mice, Transgenic
;
Spinal Cord/pathology*
;
Mitochondria/physiology*
;
Disease Models, Animal