1.Confocal probe localization algorithm based on region growing and endoscope size prior.
Yuying LIU ; Yifan WANG ; Siyang ZUO
Journal of Biomedical Engineering 2022;39(5):945-957
Confocal laser endomicroscopy technology can obtain cell-level images in real time and in situ, which can assist doctors in real-time intraoperative diagnosis, but its non-invasiveness makes it difficult to relocate the optical biopsy site. The confocal probe localization algorithm can automatically calculate the coordinates of the probe tip, that is, the coordinates of the optical biopsy site. In this paper, a confocal probe localization algorithm based on region growing and endoscope size prior was proposed. The algorithm detected the probe region by region growing on the probe edge image, then searched for tip points based on a given probe axis, and iteratively optimized it. Finally, based on the single-degree-of-freedom motion characteristics of the probe, the three-dimensional coordinates of the tip of the probe were calculated by using the prior information of the size of the endoscope, which solved the scale uncertainty problem of the monocular camera. The confocal probe localization algorithm was tested on the dataset collected in this paper. The results showed that our algorithm no longer relied on the color information of the probe, avoided the influence of uneven illumination on the gray value of the probe pixels, and had a more robust location accuracy and running speed. Within the length of the probe extending out of the endoscope from 0 to 5 cm, the pixel error could be as low as 11.76 pixels, and the average relative position error could be as low as 1.66 mm, which can achieve the real-time and accurate localization of the confocal probe.
Endoscopes
;
Algorithms
;
Microscopy, Confocal/methods*
2.Finite element analysis of the effect of bone on occlusal adjustment of right upper first molar implants
Jiawen CHEN ; Siyang LUO ; Yin LIU ; Guangneng CHEN ; Yuwen ZUO ; Xianyu HE ; Minxian MA
Chinese Journal of Tissue Engineering Research 2024;28(16):2579-2586
BACKGROUND:Bone tissue remodeling is closely related to stress loading.Currently,there are few studies or guidelines on the relationship between bone and occlusal adjustment of implant prostheses and there is also a lack of scientific evidence. OBJECTIVE:To investigate the effects of different implant occlusal gaps on stress distribution,stress peak and displacement at the implant-bone interface under Ⅰ-Ⅳ bone conditions by a finite element method. METHODS:After scanning the equal-scale tooth model with an optical scanner,equal-scale models of the upper right first molar Straumann 4.8×8 mm BL RC implant and its related components was constructed using Solidworks 2022.Then,using Mimics,Geomagic,and Solidworks software,the maxillary and mandibular bone models of class Ⅰ-Ⅳ bones were established based on the bone classification proposed by ZARB and LEKHOLM in the literature,and the NORTON and TRISI bone density classification method.The models were assembled with the occlusal gaps of 0,20,40,60,80,and 100 μm for the restorations,and an additional set of homogeneous models without density ratio settings was constructed for comparison.After the above models were imported into Hypermesh for meshing,the material assignment,boundary constraints and parameter setting were performed for the finite element analysis.Finally,250 N was used as the loading force to simulate the maxillary and mandibular stress conditions.Stress distribution,peak stress and displacement of the implant-bone interface in each group of models were analyzed and compared. RESULTS AND CONCLUSION:Under the same loading conditions,the stresses in the implant restorations were evenly distributed with the occlusal contact points.When the occlusal gap reached 80 and 100 μm,stress interruptions occurred in the implant crowns under class Ⅰ bone and class Ⅱ,Ⅲ and Ⅳ bones,respectively.The displacement of the implant-bone interface was mainly concentrated in the cortical bone region around the implant and transmitted down the long axis of the implant to the cancellous bone region at the bottom.With the changes of class Ⅰ-Ⅳ jaw bones,the displacement and Von Mises stress in the cortical bone region increased in all groups,and were greater than those in the cancellous bone region.The Von Mises stress in the cancellous bone region was similar to that in the cortical bone region except that it showed a downward trend from class Ⅱ bone.However,when the occlusal gap increased,the stress and displacement peak values in the cortical bone and the cancellous bone showed a decreasing trend.The stress of the implant-bone interface was between 20 MPa and 60 MPa when the occlusal gap was 0-40 μm for class Ⅱ-Ⅳ bones and 60 μm for class Ⅳ bone,and the stress of the other groups was less than 20 MPa.The Von Mises stress was mainly concentrated in the neck of the implant,and the peak value of von Mises stress in class Ⅱ-Ⅳ bones with the occlusal gap of 20 μm was higher than that(144.10 MPa)in class Ⅰ bone with the occlusal gap of 0 μm.In the homogeneous model with different elastic moduli,the distribution of stress and displacement was more uniform than that in the heterogeneous model and the occlusal space should increase with the decrease of jaw bone density in clinical practice.To conclude,from the perspective of biomechanics,the alveolar bone should be taken into account in the occlusal adjustment of implant denture.An occlusal gap of 20-40 μm between a single dental implant and a natural tooth in the opposite jaw is a relatively suitable solution for occlusal adjustment under different bone conditions.However,due to the particularity of finite element analysis method,it needs to be further studied in combination with clinical practice.
3.Finite element analysis of various root shield thicknesses in maxillary central incisor socket-shield technique
Guangneng CHEN ; Siyang LUO ; Mei WANG ; Bin YE ; Jiawen CHEN ; Yin LIU ; Yuwen ZUO ; Xianyu HE ; Jiajin SHEN ; Minxian MA
Chinese Journal of Tissue Engineering Research 2025;29(10):2052-2060
BACKGROUND:Socket-shield technique can effectively maintain labial soft and hard tissues,but the incidence of postoperative complications such as exposure and displacement of root shield is relatively high.It is speculated that the root shield may be exposed and displaced due to excessive load after long-term function of dental implants. OBJECTIVE:Through three-dimensional finite element analysis,we aim to study the influence of varying root shield thicknesses on the stress distribution,equivalent stress peaks,and displacement in the root shield,periodontal ligaments,implant,and surrounding alveolar bone under normal occlusal loading.We also attempt to analyze the correlation between the thickness of the root shield and occurrence of mechanical events such as root shield exposure,displacement,and fracture. METHODS:Cone-beam CT data of a patient who met the indication standard of socket-shield technique for maxillary central incisor were retrieved from database.Reverse engineering techniques were used to build models of the maxillary bone and root shield,while forward engineering was used to create models for the implant components based on their parameters.Models depicting various root shield thicknesses(0.5,1.0,1.5,and 2.0 mm)were created using Solidworks 2022 software.ANSYS Workbench 2021 software was then used to simulate and analyze the effects of varying root shield thicknesses on stress distribution,equivalent stress peaks,and displacement of the root shields,periodontal ligaments,implants,and surrounding alveolar bone under normal occlusion. RESULTS AND CONCLUSION:(1)In all root shield models,the stress was concentrated on the palatal cervical side,both sides of the edges and the lower edge of the labial side.As the thickness of the root shield increased,the equivalent stress peak and displacement showed a decreasing trend.The 0.5 mm thickness model produced a stress concentration of 176.20 MPa,which exceeded the yield strength(150 MPa)of tooth tissue.(2)The periodontal ligament stress in each group was concentrated in the neck margin and upper region.With the increase of root shield thickness,the equivalent stress peak and displacement of periodontal ligament showed a decreasing trend.(3)Implant stress in all models was concentrated in the neck of the implant and the joint of the implant-repair abutment,and the labial side was more concentrated than the palatal side.With the increase of root shield thickness,the equivalent stress peak of the implant in the model showed an increasing trend.(4)In each group of models,stress of cortical bone concentrated around the neck of the implant and the periphery of the root shield,and the labial side was more concentrated than the palatal side.With the increase of the thickness of the root shield,the equivalent stress peak around the root shield decreased;the peak value of the equivalent stress of the bone around the neck of the implant showed an increasing trend.In the model,the stress of cancellous bone was mainly concentrated around the neck of the lip of the implant,the top of the thread,the root tip and the lower margin of the root shield,and the labial side was more concentrated than the palatal side.With the increase of the thickness of the root shield,the peak value of the equivalent stress of the bone around the root shield in the model showed a decreasing trend.The minimum principal stress of cortical bone in each group of models was concentrated around the neck of the implant,exhibiting a fan-shaped distribution.As the thickness of the root shield increased,the minimum principal stress of cortical bone showed an increasing trend.(5)These results indicate that different thicknesses of the root shield have different biomechanical effects.The root shield with a thickness of 0.5 mm is easy to fracture.For patients with sufficient bone width,the root shield with a thickness of 2.0 mm is an option to reduce the risk of complications such as root shield exposure,fracture,and displacement.Meanwhile,it should be taken into account to protect the periodontal ligament in the preparation process,and rounding treatments ought to be carried out on both sides and the lower edge of the root shield.