1.The induction and cryopreservation of erythroid progenitor cells derived from umbilical cord blood mononuclear cells.
Lin CHEN ; Xiaoyan XIE ; Jiafei XI ; Yang LYU ; Yu TIAN ; Daqing LIU ; Wen YUE ; Yanhua LI ; Xue NAN ; Siting LI ; Zeng FAN ; Xuetao PEI
Chinese Journal of Hematology 2016;37(1):45-50
OBJECTIVETo discover the techniques for ex vivo generation and cryopreservation of erythroid progenitor cells (EPCs)derived from umbilical cord blood (UCB)mononuclear cells (MNCs).
METHODSUCB was chosen as the source of EPCs. Erythrocytes were precipitated by hydroxyethyl starch (HES). MNCs were separated by Ficoll density gradient centrifugation. Erythroid progenitor cell were generated from MNC ex vivo in suspension culture supplemented with stem cell growth factor, insulin growth factor, erythropoietin, Fms- liketyrosinekinase ligand, transferrin and dexamethasone. Cell maturation was evaluated by morphologic analysis and CD71/CD235a expression profiling. In vitro induced cells were cryopreserved using different cryopreservation media. The cell survival rate, phenotype and proliferation curves were detected after cell thawing.
RESULTSWith the extension of culture time, the total number of cells increased significantly accompanied with the elevation of CD71 and CD235 positive populations. After 14- day inducing, the cells reached to approximately 110 times of the starting number with the cell viability as (88.92±0.95)%. The percentages of cell surface markers were (86.77±9.11)% for CD71 and (64.47±16.67)% for CD71/CD235, respectively. With the extension of inducing time, wright- Giemsa staining showed that the middle erythroblasts appeared mostly at day 10, and the late erythroblasts were seen at day 14. The red pellets were present at day 14, which indicated the more production of hemoglobin. Colony forming assay showed that erythroid colonies at induction day 7 were higher than that for non-induced cells (326.00±97.96vs 61.60±20.03 per 2 000 cells). With the extension of culture time, the number of erythroid colonies decreased. Induced EPCs were preserved with different cryopreservation solutions, in which 10% DMSO were better than 5% DMSO. Additionally, 10% DMSO + 2% HSA showed no different with 10% DMSO + 5% HSA. Combined 50% plasma with 2% HSA was more effective.
CONCLUSIONSThis non- serum culture media could effectively induced and expanded EPCs, and 10% DMSO + 2% HSA + 50% plasma appeared to be a desirable cryopreservation solution for EPCs from UCB.
Cell Culture Techniques ; Cell Differentiation ; Cell Survival ; Cells, Cultured ; Cryopreservation ; methods ; Erythroblasts ; cytology ; Erythroid Precursor Cells ; cytology ; Fetal Blood ; cytology ; Humans ; Leukocytes, Mononuclear ; cytology ; Umbilical Cord
2.FOS expression in oxytocin and vasopressin positive neurons in paraventricular nucleus of mice induced by diabetes
Shumin WANG ; Peng JIA ; Shuting REN ; Siting LYU ; Ting ZHANG ; Yanling YANG ; Juan SHI
Chinese Journal of Neuroanatomy 2024;40(1):35-42
Objective:To explore the feature of FOS expression in oxytocin-and vasopressin-positive neurons in the hypothalamic paraventricular nucleus(PVN)under different status of diabetes mellitus(DM).Methods:Intraperito-neal injection of vehicle or STZ in mice was conducted to establish control or diabetes model.Mechanical sensitivity was evaluated by von Frey filament tests to distinguish diabetic neuropathic pain(DNP)from without-pain group(DWP).The expression of FOS,oxytocin(OXT)-and vasopressin(VP)-positive neurons,as well as their double labeling was detected by immunohistochemical and immunofluorescent staining.Cell counting and comparison were made in groups.Results:FOS expression was easily detected in the PVN in the three groups(Control group,DNP group and DWP group)at 7 days,while that in DWP and DNP groups at 28 days was hardly detectable,with the number being signifi-cantly different from the 7 days group(P<0.05 or 0.001).Likewise,compared with the control group,immunofluo-rescent signals for VP and OXT staining in the DNP and DWP groups also showed a trend of weakening as the modeling time increased(P<0.05).The cell counting after double staining for VP or OXT with FOS showed that,in the DWP group at 7 days,the number of VP and FOS double-labeled neurons was 74.33±22.10,accounting for(56.64± 7.52)%of VP-positive cells,whereas the double labeling rate for OXT and FOS was only(10.44±3.14)%.In the DNP group at 7 days,the number of OXT and FOS double-labeled neurons was 51.00±31.80,accounting for(18.50 ±9.51)%of OXT-positive neurons,whereas the double labeling rate for VP and FOS was only(9.34±3.27)%.In contrast to these changes in 7 days group,the expression of FOS decreased sharply in the group of 28 days,thereby al-most no double-labeled neurons.Conclusion:The plasticity changes of oxytocin-and vasopressin-positive neurons in the PVN are different depending on the status of pain and non-pain,and the stage of disease progression.Understanding the changes is of great significance for unravelling the neural mechanism of diabetes and its complications.
3.Study on the induction and differentiation of megakaryocyte progenitor cell derived from umbilical cord blood.
Lin CHEN ; Xiaoyan XIE ; Daqing LIU ; Yang LYU ; Wen YUE ; Wei SHI ; Jiafei XI ; Xiuyuan ZHANG ; Xue NAN ; Jingxue WANG ; Junnian ZHOU ; Yanhua LI ; Lijuan HE ; Hailei YAO ; Siting LI ; Xuetao PEI
Chinese Journal of Hematology 2014;35(3):187-190
OBJECTIVETo build a protocol of separation and induction of megakaryocytes derived from cord blood mononuclear cells.
METHODSRed blood cells were precipitated by hydroxyethyl starch (HES). Mononuclear cells were obtained by density gradient centrifugation with Ficoll. The inducing efficiencies of megakaryocytes by using of different cytokine cocktails and culture media were analyzed.
RESULTSThe best choice for erythrocyte sedimentation and high efficiency of nucleated cells retrieving were obtained by using of 1.5% HES. The isolated cord blood mononuclear cells were cultured with domestic serum-free medium supplemented with 116t (IL-11, IL-6, TPO), st36(SCF, TPO, IL-3, IL-6), pt36 (PDGF,TPO,IL-3,IL-6) or pst36 for 7 days. St36 group (50 ng/ml SCF, 50 ng/ml TPO, 20 ng/ml IL-3 and 50 ng/ml IL-6) yielded the most CD41/CD61 positive [(6.79±1.97)×10⁴]. The cell viability [(82.85 ± 0.64)%] of st36 group by using of imported serum-free medium was better than [(60.90±6.93)%] that in domestic medium on day 7 after induction, and CD41/CD61 positive cells count [(18.60±1.97)×10⁴] were more than domestic serum-free medium group. Therefore, we chose imported serum-free medium containing st36 to induce cord blood mononuclear cells. After a prolonged culture, the total cell numbers increased accompanied with an elevated percentage of CD41/CD61 positive cells, which reached (54.27 ± 6.31)% on day 14. Wright-Giemsa staining showed that different phase cells, such as megakaryoblast, promegakaryocyte and granular megakaryocyte, occurred after 10 days'culture. Clone forming unit-megakarocytes (CFU-MK) assay showed that the colonies count increased with the prolonged incubation. CFU-MK colonies were [1 236.0±32.9] on day 14, which was higher than that in medium without induction (P<0.01). Platelets from megakaryocytes showed agglutination function after 10 days'culture.
CONCLUSION1.5% HES was the best solution to precipitate erythrocytes. The combination of an imported serum-free medium with IL-3, IL-6, SCF and TPO showed better induction efficiency than domestic medium or other cytokine cocktails. Meanwhile, induced megakaryocytes produced functional platelets.
Cell Culture Techniques ; Cell Differentiation ; Cell Division ; Cell Separation ; methods ; Cells, Cultured ; Culture Media, Serum-Free ; Fetal Blood ; cytology ; Humans ; Megakaryocyte Progenitor Cells ; cytology