1.High Cardiorespiratory Fitness Protects against Molecular Impairments of Metabolism, Heart, and Brain with Higher Efficacy in Obesity-Induced Premature Aging
Patcharapong PANTIYA ; Chanisa THONUSIN ; Natticha SUMNEANG ; Benjamin ONGNOK ; Titikorn CHUNCHAI ; Sasiwan KERDPHOO ; Thidarat JAIWONGKAM ; Busarin ARUNSAK ; Natthaphat SIRI-ANGKUL ; Sirawit SRIWICHAIIN ; Nipon CHATTIPAKORN ; Siriporn C. CHATTIPAKORN
Endocrinology and Metabolism 2022;37(4):630-640
Background:
High cardiorespiratory fitness (CRF) protects against age-related diseases. However, the mechanisms mediating the protective effect of high intrinsic CRF against metabolic, cardiac, and brain impairments in non-obese versus obese conditions remain incompletely understood. We aimed to identify the mechanisms through which high intrinsic CRF protects against metabolic, cardiac, and brain impairments in non-obese versus obese untrained rats.
Methods:
Seven-week-old male Wistar rats were divided into two groups (n=8 per group) to receive either a normal diet or a highfat diet (HFD). At weeks 12 and 28, CRF, carbohydrate and fatty acid oxidation, cardiac function, and metabolic parameters were evaluated. At week 28, behavior tests were performed. At the end of week 28, rats were euthanized to collect heart and brain samples for molecular studies.
Results:
The obese rats exhibited higher values for aging-related parameters than the non-obese rats, indicating that they experienced obesity-induced premature aging. High baseline CRF levels were positively correlated with several favorable metabolic, cardiac, and brain parameters at follow-up. Specifically, the protective effects of high CRF against metabolic, cardiac, and brain impairments were mediated by the modulation of body weight and composition, the lipid profile, substrate oxidation, mitochondrial function, insulin signaling, autophagy, apoptosis, inflammation, oxidative stress, cardiac function, neurogenesis, blood-brain barrier, synaptic function, accumulation of Alzheimer’s disease-related proteins, and cognition. Interestingly, this effect was more obvious in HFD-fed rats.
Conclusion
The protective effect of high CRF is mediated by the modulation of several mechanisms. These effects exhibit greater efficacy under conditions of obesity-induced premature aging.
2.Gasdermin D-mediated pyroptosis in myocardial ischemia and reperfusion injury: Cumulative evidence for future cardioprotective strategies.
Panat YANPISET ; Chayodom MANEECHOTE ; Sirawit SRIWICHAIIN ; Natthaphat SIRI-ANGKUL ; Siriporn C CHATTIPAKORN ; Nipon CHATTIPAKORN
Acta Pharmaceutica Sinica B 2023;13(1):29-53
Cardiomyocyte death is one of the major mechanisms contributing to the development of myocardial infarction (MI) and myocardial ischemia/reperfusion (MI/R) injury. Due to the limited regenerative ability of cardiomyocytes, understanding the mechanisms of cardiomyocyte death is necessary. Pyroptosis, one of the regulated programmed cell death pathways, has recently been shown to play important roles in MI and MI/R injury. Pyroptosis is activated by damage-associated molecular patterns (DAMPs) that are released from damaged myocardial cells and activate the formation of an apoptosis-associated speck-like protein containing a CARD (ASC) interacting with NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), resulting in caspase-1 cleavage which promotes the activation of Gasdermin D (GSDMD). This pathway is known as the canonical pathway. GSDMD has also been shown to be activated in a non-canonical pathway during MI and MI/R injury via caspase-4/5/11. Suppression of GSDMD has been shown to provide cardioprotection against MI and MI/R injury. Although the effects of MI or MI/R injury on pyroptosis have previously been discussed, knowledge concerning the roles of GSDMD in these settings remains limited. In this review, the evidence from in vitro, in vivo, and clinical studies focusing on cardiac GSDMD activation during MI and MI/R injury is comprehensively summarized and discussed. Implications from this review will help pave the way for a new therapeutic target in ischemic heart disease.