1.Antigen distribution frequency of Han and Tujia polyhemia systems in Chongqing
Pengwei YIN ; Bujin LIU ; Danli CUI ; Huayou DAI ; Haiman ZOU ; Siqi WU ; Xia HUANG ; Yongzhu XU
Chinese Journal of Blood Transfusion 2025;38(2):214-221
[Objective] To analyse the distribution of antigen phenotypes in the Rh, MNS and Kidd blood group systems of Han and Tujia blood donors in Chongqing, and to provide data support for the establishment of an expanded blood group antigen phenotype database and the development of expanded blood group coordinated transfusion in blood donors. [Methods] The antigens of Rh, MNS and Kidd blood group systems in Han and Tujia blood donors in Chongqing were detected by test-tube method, and the Hardy-Weinborg anastomosis of the three blood group systems was calculated. Pearson's chi-square test and Fisher's exact probability method were used to compare the differences in phenotypic distribution frequencies among different regions and ethnic groups. [Results] Han and Tujia blood donors accounted for the highest proportion of CCee in the antigenic phenotype of the Rh blood group system, followed by CcEe, and then Ccee and ccEE. Tujia blood donors accounted for 52.02% of CCee, which was higher than that of Han blood donors (47.24%), while Han blood donors accounted for 32.20% of CcEe, which was higher than that of Tujia blood donors (28.94%). In the antigenic phenotype of the MNS blood group system, the blood donors of Han nationality and Tujia were MN>MM>NN,. The antigen phenotype distribution frequency of the Kidd blood group system was highest for Jk(a+b+) among both Han and Tujia blood donors, and the blood donors of Han nationality were Jk(a+b+)>Jk(a+b+), while those of Tujia were Jk(a-b+)>Jk(a+b-). The antigens of the three blood groups of Han and Tujia blood donors were consistent with the Hardy-Weinberg balance(P>0.05). There was no statistically significant difference in the frequency of antigen phenotypes of the three blood group systems between Han and Tujia blood donors(P>0.05). There were statistically significant differences in the phenotypic distribution frequency of Rh antigens between Chongqing and Xi'an, Zhejiang, Shantou, Foshan, Nanning and Yangzhou(P<0.05), but not with Guang'an and Shenzhen(P>0.05). There were statistically significant differences in the phenotypic distribution frequency of Rh antigens between Han, Tujia, Zang, Mongolian, Korean and Hani ethnic groups in Chongqing(P<0.05). There were statistically significant differences in the phenotypic distribution frequency of MNS antigens between Han blood donors in Chongqing and Urumqi, Hainan and Yuncheng, but not with Xi'an and Wenzhou. There was a statistically significant difference in the phenotypic distribution frequency of MNS antigen between Tujia blood donors in Chongqing and Urumqi and Hainan(P<0.05), but there was no significant difference in the phenotypic distribution frequency of MNS antigen between Tujia blood donors in Chongqing, Urumqi and Hainan(P>0.05). There was a statistically significant difference in the phenotypic distribution frequency of Kidd antigens between blood donors in Chongqing and Harbin(P<0.05), but not in Huizhou, Wenzhou and Yichang(P>0.05). [Conclusion] The population in Chongqing has multi-ethnic characteristics, and the antigenic phenotypes of Rh, MNS and Kidd blood group systems exhibit diversity and regional differences. Establishing an expanded blood bank can provide more options for precision blood transfusion.
2.Assessment and discussion of quality monitoring data for red blood cell preparations
Yun QING ; Huayou DAI ; Junhong YANG ; Qian XU ; Siqi WU ; Yunbo TIAN ; Xia HUANG
Chinese Journal of Blood Transfusion 2025;38(2):227-232
[Objective] To assess the data characteristics of quality monitoring indicators for red blood cell (RBC) preparations, so as to provide reference for continuous improvement of blood quality. [Methods] The quality inspection data of 6 types of RBC preparations from Chongqing blood center from 2019 to 2023 were summarized. For the same indicators, the numerical range of quality indicators was monitored by comparing different types of preparations with the national standard GB18469. The loss and/or damage to RBCs caused by different preparation process were compared, and the impact of different preparation processes on the quality of RBCs was discussed. [Results] The appearance and sterility test compliance rates of the six types of RBC preparations were both 100%, while the compliance rates of other items were all ≥75%. The compliance rate of hematocrit for suspended RBCs was the lowest at 75%, with a median of 0.52, which was close to the lower limit of GB18469, while the medians of hematocrit for the other types were all at the midline level of GB18469. The Hb content for different types of RBCs was significantly higher than the corresponding requirements of GB18469 (P<0.05). The hemolysis rate at the end of storage for different types of RBCs was significantly lower than the requirements of GB18469 (P<0.05). The 1 U leukoreduction process resulted in a hemoglobin content loss of about 5% and had a significant impact on the hemolysis rate at the end of storage (P<0.05). The washing process resulted in a hemoglobin content loss of <3% and had no significant impact on the hemolysis rate at the end of storage (P>0.05). The concentration process resulted in a hemoglobin content loss of <3% and had a significant impact on the hemolysis rate at the end of storage (P<0.05). [Conclusion] The impact of different processes on RBC preparations is within a controllable range and meets the requirements of GB18469. The quality monitoring data can provide a reference for clinical blood selection, effectiveness evaluation and revision of related standards.
3.Mechanism of IGF2BP2 regulation of PPAR-γ/GLUT4 pathway in insulin resistance induced by sodium arsenite exposure in HepG2 cells
Shiqing XU ; Zhida HU ; Qiyao ZHANG ; Siqi ZHAO ; Yujie WANG ; Xiaohui WANG ; Teng MA ; Li WANG
Journal of Environmental and Occupational Medicine 2025;42(4):400-407
Background Arsenic is an environmentally harmful substance that causes hepatic insulin resistance and liver damage, increasing the risk of type 2 diabetes mellitus. Objective To explore whether the insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) is involved in insulin resistance in HepG2 cells after arsenic exposure through the peroxisome-proliferator-activated receptor γ (PPAR-γ) / glucose transporter 4 (GLUT4) pathway. Methods Cell viability was determined using cell counting kit 8 (CCK8) and an appropriate NaAsO2 infection dose was determined. A cellular arsenic exposure model of HepG2 cells was established by four concentrations of NaAsO2 solution for 24 h (the experiment was divided into four groups: 0, 2, 4, and 8 μmol·L−1); HepG2 cells were firstly treated with pcDNA3.1-IGF2BP2 and pcDNA3.1-NC respectively for 6 h, then with 8 μmol·L−1 NaAsO2 for 24 h to establish a IGF2BP2 overexpression cell model (the experiment was divided into 4 groups: control, NaAsO2, NaAsO2+pcDNA3.1-IGF2BP2, and NaAsO2+pcDNA3.1-NC); finally the cells were subject to 100 nmol·L−1 insulin stimulation for 30 min. Glycogen and glucose in HepG2 cells were determined by glycogen and glucose assay kits; mRNA expression levels of IGF2BP2 were measured by quantitative real-time PCR; protein expression levels of IGF2BP2, PPAR-γ, and GLUT4 in HepG2 were detected by Western blot (WB); and the binding of IGF2BP2 to PPAR-γ and PPAR-γ to GLUT4 was verified by co-immunoprecipitation (CO-IP) experiment. Results The results of CCK8 experiment showed a dose-effect relationship between NaAsO2 concentration and cell viability. When the concentration of NaAsO2 was ≥4 μmol·L−1 , the cell viabilities were lower than that of the control group (P <0.05). With the increasing dose of NaAsO2 infection, reduced glucose consumption and glycogen levels in HepG2 cells were found in the 2, 4, and 8 μmol·L−1 NaAsO2 treatment groups compared to the control group (P <0.05). The difference between the mRNA expression level of IGF2BP2 in the HepG2 cells treated with 4 or 8 μmol L−1 NaAsO2 and the control group was significant (P <0.05). In the IGF2BP2 overexpression cell model, compared with the control group, glucose consumption and glycogen levels were lowered in the NaAsO2 group (P <0.05), the mRNA expression level of IGF2BP2 and the protein expression levels of IGF2BP2, PPAR-γ, and GLUT4 in the cell membrane were all decreased (P <0.05). Compared with the NaAsO2 group, the glucose consumption and glycogen levels were increased in the NaAsO2+pcDNA3.1-IGF2BP2 group (P <0.05), and the mRNA expression level of IGF2BP2 and the protein expression levels of IGF2BP2, PPAR-γ, and GLUT4 in the cell membrane were all increased (P <0.05). The results of CO-IP experiments showed that IGF2BP2 interacted with PPAR-γ as well as PPAR-γ with GLUT4 protein. Conclusion IGF2BP2 is involved in arsenic exposure-induced insulin resistance in HepG2 cells by acting on the PPAR-γ/GLUT4 pathway.
4.Establishment and validation of a risk prediction model for 90-day mortality in patients with acute-on-chronic liver failure based on sarcopenia
Huina CHEN ; Ming KONG ; Siqi ZHANG ; Manman XU ; Yu CHEN ; Zhongping DUAN
Journal of Clinical Hepatology 2025;41(6):1135-1142
ObjectiveTo establish and validate a new prediction model for the risk of death in patients with acute-on-chronic liver failure (ACLF) based on sarcopenia and other clinical indicators, and to improve the accuracy of prognostic assessment for ACLF patients. MethodsA total of 380 patients with ACLF who were admitted to Beijing YouAn Hospital, Capital Medical University, from January 2019 to January 2022 were enrolled, and they were divided into training group with 228 patients and testing group with 152 patients in a ratio of 6∶4 using the stratified random sampling method. For the training group, CT images were used to measure the cross-sectional area of the skeletal muscle at the third lumbar vertebra (L3), and L3 skeletal muscle index (L3-SMI) was calculated. Sarcopenia was diagnosed based on the previously established L3-SMI reference values for healthy adults in northern China. Univariate and multivariable Cox regression analyses were used to establish a sarcopenia-ACLF model which integrated sarcopenia and clinical risk factors, and a nomogram was developed for presentation. The area under the ROC curve (AUC) was used to assess the predictive performance of the model, the calibration curve was used to assess the degree of calibration, and a decision curve analysis was used to investigate the clinical application value of the model. The independent-samples t test or the Mann-Whitney U test was used for comparison of continuous data between two groups, and the chi-square test was used for comparison of categorical data between two groups. The Kaplan-Meier method was used to plot survival curves, and the Log-rank test was used for comparison between groups. The DeLong test was used for comparison of AUC between different models. ResultsThe multivariate Cox regression analysis showed that sarcopenia (hazard ratio [HR]=1.962, 95% confidence interval [CI]: 1.185 — 3.250, P=0.009), total bilirubin (HR=1.003, 95%CI: 1.002 — 1.005, P<0.001), international normalized ratio (HR=1.997, 95%CI: 1.674 — 2.382, P<0.001), and lactic acid (HR=1.382, 95%CI: 1.170 — 1.632, P<0.001) were included in the sarcopenia-ACLF model. In the training cohort, the sarcopenia-ACLF model had a larger AUC than MELD-Na score in predicting 90-day mortality in patients with ACLF (0.80 vs 0.73, Z=1.97, P=0.049). In the test cohort, the sarcopenia-ACLF model had a significantly larger AUC than MELD score (0.79 vs 0.69, Z=2.70, P=0.007) and MELD-Na score (0.79 vs 0.68, Z=2.92, P=0.004). The calibration curve showed that the model had good calibration ability, with a relatively good consistency between the predicted risk of mortality and the observed results. The DCA results showed that within a reasonable range of threshold probabilities, the sarcopenia-ACLF model showed a greater net benefit than MELD and MELD-Na scores in both the training cohort and the test cohort. ConclusionThe sarcopenia-ACLF model developed in this study provides a more accurate tool for predicting the risk of 90-day mortality in ACLF patients, which provides support for clinical decision-making and helps to optimize treatment strategies.
5.Biomechanical characteristics of lower limbs after discoid lateral meniscus injury surgery.
Zirui ZHOU ; Siqi WANG ; Xiaojing TIAN ; Bingbing XU ; Mingming LEI ; Jianquan WANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(7):891-895
OBJECTIVE:
To review the research progress on the lower limb biomechanical characteristics of patients with discoid lateral meniscus (DLM) injury after surgery.
METHODS:
By searching relevant domestic and international research literature on DLM, the postoperative characteristics of knee joint movement biomechanics, tibiofemoral joint stress distribution, lower extremity force line, and patellofemoral joint changes in patients with DLM injury were summarized.
RESULTS:
Surgical treatment can lead to varying degrees of changes in the lower limb biomechanical characteristics of patients with DLM injury. Specifically, the kinematic biomechanics of the knee joint can significantly improve, but there are still problems such as extension deficits in the affected knee joint. The peak stress of the tibiofemoral joint decreases with the increase of the residual meniscus volume, and the degree of change is closely related to the residual meniscus volume. Preserving a larger volume of the meniscus, especially the anterior horn volume, helps to reduce stress concentration. The lower extremity force line will deviate outward after surgery, and the more meniscus is removed during surgery, the greater the change in the lower extremity force line after surgery. There are conditions such as cartilage degeneration, position and angle changes in the patellofemoral joint after surgery.
CONCLUSION
The changes in the lower limb biomechanical characteristics after DLM injury are closely related to the choice of surgical methods and rehabilitation programs. However, the mechanisms of biomechanical changes in multiple lower limb joints and individual differences still need to be further studied and clarified.
Humans
;
Biomechanical Phenomena
;
Tibial Meniscus Injuries/physiopathology*
;
Menisci, Tibial/physiopathology*
;
Knee Joint/surgery*
;
Lower Extremity/physiopathology*
;
Patellofemoral Joint/physiopathology*
;
Range of Motion, Articular
;
Knee Injuries/physiopathology*
6.Augmentation of PRDX1-DOK3 interaction alleviates rheumatoid arthritis progression by suppressing plasma cell differentiation.
Wenzhen DANG ; Xiaomin WANG ; Huaying LI ; Yixuan XU ; Xinyu LI ; Siqi HUANG ; Hongru TAO ; Xiao LI ; Yulin YANG ; Lijiang XUAN ; Weilie XIAO ; Dean GUO ; Hao ZHANG ; Qiong WU ; Jie ZHENG ; Xiaoyan SHEN ; Kaixian CHEN ; Heng XU ; Yuanyuan ZHANG ; Cheng LUO
Acta Pharmaceutica Sinica B 2025;15(8):3997-4013
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent inflammation and joint damage, accompanied by the accumulation of plasma cells, which contributes to its pathogenesis. Understanding the genetic alterations occurring during plasma cell differentiation in RA can deepen our comprehension of its pathogenesis and guide the development of targeted therapeutic interventions. Here, our study elucidates the intricate molecular mechanisms underlying plasma cell differentiation by demonstrating that PRDX1 interacts with DOK3 and modulates its degradation by the autophagy-lysosome pathway. This interaction results in the inhibition of plasma cell differentiation, thereby alleviating the progression of collagen-induced arthritis. Additionally, our investigation identifies Salvianolic acid B (SAB) as a potent small molecular glue-like compound that enhances the interaction between PRDX1 and DOK3, consequently impeding the progression of collagen-induced arthritis by inhibiting plasma cell differentiation. Collectively, these findings underscore the therapeutic potential of developing chemical stabilizers for the PRDX1-DOK3 complex in suppressing plasma cell differentiation for RA treatment and establish a theoretical basis for targeting PRDX1-protein interactions as specific therapeutic targets in various diseases.
7.Moderating effect of salidroside on intestinal microbiota in mice exposed to PM2.5
Siqi LI ; Chen LIU ; Weihong XU ; Wenbo WU ; Ruixi ZHOU ; Limin ZHANG ; Chao SONG ; Yumei LIU ; Fengjiao TAN ; Mengxiao LUAN ; Xiaolin HAN ; Jinfeng TAN ; Li YU ; Dongqun XU ; Qin WANG ; Xiaohong LI ; Wanwei LI
Journal of Environmental and Occupational Medicine 2024;41(2):125-132
Background Salidroside (SAL) has a protective effect on multiple organ systems. Exposure to fine particulate matter (PM2.5) in the atmosphere may lead to disruptions in gut microbiota and impact intestinal health. The regulatory effect of SAL on the gut microbiota of mice exposed to PM2.5 requires further investigation. Objective To evaluate gut microbiota disruption in mice after being exposed to PM2.5 and the potential effect of SAL. Methods Forty male C57BL/6 mice, aged 6 to 8 weeks, were randomly divided into four groups: a control group, an SAL group, a PM2.5 group, and an SAL+PM2.5 group, each containing 10 mice. In the SAL group and the SAL+PM2.5 group, the mice were administered SAL (60 mg·kg−1) by gavage, while in the control group and the PM2.5 group, sterile saline (10 mL·kg−1) was administered by gavage. In the PM2.5 group and the SAL+PM2.5 group, PM2.5 suspension (8 mg·kg−1) was intratracheally instilled, and in the control group and SAL group, sterile saline (1.5 mL·kg−1) was intratracheally administered. Each experiment cycle spanned 2 d, with a total of 10 cycles conducted over 20 d. Histopathological changes in the ileum tissue of the mice were observed after HE staining. Colon contents were collected for gut microbiota sequencing and short-chain fatty acids (SCFAs) measurements. Results The PM2.5 group showed infiltration of inflammatory cells in the ileum tissue, while the SAL+PM2.5 group exhibited only a small amount of inflammatory cell infiltration. Compared to the control group, the PM2.5 group showed decreased Shannon index (P<0.05) and increased Simpson index (P<0.05), indicating that the diversity of gut microbiota in this group was decreased; the SAL+PM2.5 group showed increased Shannon index compared to the PM2.5 group (P<0.05) and decreased Simpson index (P<0.05), indicating that the diversity of gut microbiota in mice intervened with SAL was increased. The principal coordinates analysis (PCoA) revealed a significant separation between the PM2.5 group and the control group, while the separation trend was less evident among the control group, the SAL group, and the SAL+PM2.5 group. The unweighted pair-group method with arithmetic means (UPGMA) clustering tree results showed that the control group and the SAL group clustered together first, followed by clustering with the SAL+PM2.5 group, and finally, the three groups clustered with the PM2.5 group. The PCoA and UPGMA clustering results indicated that the uniformity and similarity of the microbiota in the PM2.5 group were significantly decreased. Compared to the control group, the PM2.5 group showed decreased abundance of phylum Bacteroidetes and Candidatus_Saccharimonas (P<0.05) and increased abundance of phylum Proteobacteria, genus Escherichia, genus Bacteroides, genus Prevotella, genus Enterococcus, and genus Proteus (P<0.05). Compared to the PM2.5 group, the SAL+PM2.5 group showed decreased abundance of phylum Proteobacteria, phylum Actinobacteria, genus Prevotella, and genus Proteus (P<0.05), and increased abundance of Candidatus_Saccharimonas (P<0.05). The PM2.5 group showed reduced levels of propionic acid, valeric acid, and hexanoic acid compared to the control group (P<0.05), while the SAL+PM2.5 group showed increased levels of propionic acid, isobutyric acid, butyric acid, valeric acid, and hexanoic acid compared to the PM2.5 group (P<0.05). Conclusion Exposure to PM2.5 can cause pathological alterations, microbial dysbiosis, and disturbing production of SCFAs in intestinal tissue in mice. However, SAL can provide a certain degree of protective effect against these changes.
8.Effects of PM2.5 sub-chronic exposure on liver metabolomics in mice
Liu YANG ; Siqi DOU ; Xinyuan LI ; Shuo WEN ; Kun PAN ; Biao WU ; Jinzhuo ZHAO ; Jianjun XU ; Peng LYU
Journal of Environmental and Occupational Medicine 2024;41(2):207-213
Background Atmospheric fine particulate matter (PM2.5) can disrupt the metabolic homeostasis of the liver and accelerate the progression of liver diseases, but there are few studies on the effects of sub-chronic PM2.5 exposure on the liver metabolome. Objectives To investigate the effects of sub-chronic exposure to concentrated PM2.5 on hepatic metabolomics in mice by liquid chromatography-mass spectrometry (LC-MS), and to identify potentially affected metabolites and metabolic pathways. Methods Twelve male C57BL/6J (6 weeks old) mice were randomly divided into two groups: a concentrated PM2.5 exposure group and a clean air exposure group. The mice were exposed to concentrated PM2.5 using the "Shanghai Meteorological and Environmental Animal Exposure System" at Fudan University. The exposure duration was 8 h per day, 6 d per week, for a total of 8 weeks. The mice's liver tissues were collected 24 h after the completion of exposure. LC-MS was performed to assess changes in the hepatic metabolome. Orthogonal partial least squares discriminant analysis and t-test were employed to identify differentially regulated metabolites between the two groups under the conditions of variable important in projection (VIP)≥1.0 and P<0.05. Metabolic pathway enrichment analysis was performed using MetaboAnalyst 5.0 software and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Results A total of 297 differentially regulated metabolites were identified between the concentrated PM2.5 exposure group and the clean air group. Among these metabolites, 142 were upregulated and 155 were downregulated. A total of 38 metabolic pathways were altered, with 7 pathways showing significant perturbation (P<0.05). These pathways involved amino acid metabolism, glucose metabolism, nucleotide metabolism, as well as cofactor and vitamin metabolism. The 7 significant metabolic pathways were pantothenic acid and coenzyme A biosynthesis; purine metabolism; amino sugar and nucleotide sugar metabolism; arginine biosynthesis; alanine, aspartate and glutamate metabolism; aminoacyl-tRNA biosynthesis; and fructose and mannose metabolism. Conclusion The results from metabolomics analysis suggest that sub-chronic exposure to PM2.5 may disrupt hepatic energy metabolism and induce oxidative stress damage. Aspartic acid, succinic acid, ornithine, fumaric acid, as well as purine and xanthine derivatives, were identified as potential early biomarkers of hepatic response to sub-chronic PM2.5 exposure.
9.TREM-2 Drives Development of Multiple Sclerosis by Promoting Pathogenic Th17 Polarization.
Siying QU ; Shengfeng HU ; Huiting XU ; Yongjian WU ; Siqi MING ; Xiaoxia ZHAN ; Cheng WANG ; Xi HUANG
Neuroscience Bulletin 2024;40(1):17-34
Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease, mediated by pathogenic T helper 17 (Th17) cells. However, the therapeutic effect is accompanied by the fluctuation of the proportion and function of Th17 cells, which prompted us to find the key regulator of Th17 differentiation in MS. Here, we demonstrated that the triggering receptor expressed on myeloid cells 2 (TREM-2), a modulator of pattern recognition receptors on innate immune cells, was highly expressed on pathogenic CD4-positive T lymphocyte (CD4+ T) cells in both patients with MS and experimental autoimmune encephalomyelitis (EAE) mouse models. Conditional knockout of Trem-2 in CD4+ T cells significantly alleviated the disease activity and reduced Th17 cell infiltration, activation, differentiation, and inflammatory cytokine production and secretion in EAE mice. Furthermore, with Trem-2 knockout in vivo experiments and in vitro inhibitor assays, the TREM-2/zeta-chain associated protein kinase 70 (ZAP70)/signal transducer and activator of transcription 3 (STAT3) signal axis was essential for Th17 activation and differentiation in EAE progression. In conclusion, TREM-2 is a key regulator of pathogenic Th17 in EAE mice, and this sheds new light on the potential of this therapeutic target for MS.
Animals
;
Humans
;
Mice
;
CD4-Positive T-Lymphocytes/pathology*
;
Cell Differentiation
;
Encephalomyelitis, Autoimmune, Experimental/metabolism*
;
Mice, Inbred C57BL
;
Multiple Sclerosis
;
Th1 Cells/pathology*
10.The clinical observation of Yangming meridian acupuncture combined with needle pushing based on the theory of"treating flaccidity through Yangming meridian"in the treatment of Guillain-Barre syndrome
Yan LIU ; Lijuan XU ; Siqi CHEN ; Yanhong LI
The Journal of Practical Medicine 2024;40(3):406-411
Objective To observe the clinical effect of Yangming meridian acupuncture combined with acupuncture push based on the theory of"treating flaccence and taking Yangming"in the treatment of Guillain-Barre syndrome.Methods 52 cases of patients with conventional rehabilitation combined with Yangming meridian acupuncture combined with acupuncture based on the theory of"treating potence and taking Yangming alone"were taken as the study group and 52 cases of patients with conventional rehabilitation alone as the control group.Limb muscle strength score,clinical efficacy,limb sensory function,limb motor function,upper limb median nerve electrophysiology and daily living ability were compared between the two groups.Results After treatment,muscle strength scores of proximal lower extremity,distal lower extremity,proximal upper extremity,distal upper extremity,median sensory nerve action potential(SNAP),motor conduction velocity(MCV),sensory conduction velocity(SCV)and modified Barthel index(MBI)were increased in 2 groups(P<0.05).The study group was more obvious(P<0.05).The total effective rate of the study group(86.54%)was higher than control group(69.23%)(P<0.05).After treatment,the sensory function and motor function of limbs in 2 groups were better than before treatment(P<0.05),especially in the study group(P<0.05).After treatment,the distal motor latency(DML)of upper limb median nerve was decreased in 2 groups(P<0.05),and more significantly in the study group(P<0.05).Conclusion Yangming meridian acupuncture combined with acupuncture pushing based on the theory of"treating impotence and taking Yangming"is effective in the treatment of Guillain-Barre syndrome,which can improve the muscle strength,sensation and motor function of limbs,and regulate nerve electrophysiology.

Result Analysis
Print
Save
E-mail