1.Importance of Balanced Attention Toward Coronavirus Disease 2019 and Neglected Tropical Diseases
Ju Yeong KIM ; Singeun OH ; Moonsoo YOON ; Tai-Soon YONG
Yonsei Medical Journal 2023;64(6):351-358
Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has been spreading since 2019, causing a worldwide pandemic. Amid the COVID-19 pandemic, tuberculosis, AIDS, and malaria have adversely affected the quality of life of patients and killed millions of people. In addition, COVID-19 continues to impede the delivery of health services, including those for the control of neglected tropical diseases (NTDs). Furthermore, NTDs have been reported as possible co-pathogens among patients infected with COVID-19. However, studies regarding parasitic co-infection among these patients have been limited. This review aimed to explore and describe the cases and reports of parasitic infections in the backdrop of COVID-19 to provide comprehensive knowledge regarding this aspect. We reviewed seven cases of patients who had parasitic co-infection and tested positive for COVID-19, and summarized the literature on the importance of controlling parasitic diseases. In addition, we identified recommendations for the control of parasitic diseases under possible difficulties, such as declining funding for parasitic diseases in 2020. This review highlights the growing burden of NTDs under COVID-19 that may be caused by the deficiency of healthcare infrastructure and human resources as the main reasons. Clinicians should remain vigilant for possible co-infections with parasites in COVID-19 patients, while policymakers are urged to reinforce a balanced and long-term health strategy that addresses both NTDs and COVID-19.
2.Alterations in immunized antigens of Anisakis pegreffii by ampicillin-induced gut microbiome changes in mice
Myungjun KIM ; Jun Ho CHOI ; Myung-hee YI ; Singeun OH ; Tai-Soon YONG ; Ju Yeong KIM
Parasites, Hosts and Diseases 2024;62(3):351-364
The gut microbiome plays an essential role in host immune responses, including allergic reactions. However, commensal gut microbiota is extremely sensitive to antibiotics and excessive usage can cause microbial dysbiosis. Herein, we investigated how changes in the gut microbiome induced by ampicillin affected the production of IgG1 and IgG2a antibodies in mice subsequently exposed to Anisakis pegreffii antigens. Ampicillin treatment caused a notable change in the gut microbiome as shown by changes in both alpha and beta diversity indexes. In a 1-dimensional immunoblot using Anisakis-specific anti-mouse IgG1, a 56-kDa band corresponding to an unnamed Anisakis protein was detected using mass spectrometry analysis only in ampicillin-treated mice. In the Anisakis-specific anti-mouse IgG2a-probed immunoblot, a 70-kDa band corresponding to heat shock protein 70 (HSP70) was only detected in ampicillin-treated and Anisakis-immunized mice. A 2-dimensional immunoblot against Anisakis extract with immunized mouse sera demonstrated altered spot patterns in both groups. Our results showed that ampicillin treatment altered the gut microbiome composition in mice, changing the immunization response to antigens from A. pegreffii. This research could serve as a basis for developing vaccines or allergy immunotherapies against parasitic infections.
3.Alterations in immunized antigens of Anisakis pegreffii by ampicillin-induced gut microbiome changes in mice
Myungjun KIM ; Jun Ho CHOI ; Myung-hee YI ; Singeun OH ; Tai-Soon YONG ; Ju Yeong KIM
Parasites, Hosts and Diseases 2024;62(3):351-364
The gut microbiome plays an essential role in host immune responses, including allergic reactions. However, commensal gut microbiota is extremely sensitive to antibiotics and excessive usage can cause microbial dysbiosis. Herein, we investigated how changes in the gut microbiome induced by ampicillin affected the production of IgG1 and IgG2a antibodies in mice subsequently exposed to Anisakis pegreffii antigens. Ampicillin treatment caused a notable change in the gut microbiome as shown by changes in both alpha and beta diversity indexes. In a 1-dimensional immunoblot using Anisakis-specific anti-mouse IgG1, a 56-kDa band corresponding to an unnamed Anisakis protein was detected using mass spectrometry analysis only in ampicillin-treated mice. In the Anisakis-specific anti-mouse IgG2a-probed immunoblot, a 70-kDa band corresponding to heat shock protein 70 (HSP70) was only detected in ampicillin-treated and Anisakis-immunized mice. A 2-dimensional immunoblot against Anisakis extract with immunized mouse sera demonstrated altered spot patterns in both groups. Our results showed that ampicillin treatment altered the gut microbiome composition in mice, changing the immunization response to antigens from A. pegreffii. This research could serve as a basis for developing vaccines or allergy immunotherapies against parasitic infections.
4.Alterations in immunized antigens of Anisakis pegreffii by ampicillin-induced gut microbiome changes in mice
Myungjun KIM ; Jun Ho CHOI ; Myung-hee YI ; Singeun OH ; Tai-Soon YONG ; Ju Yeong KIM
Parasites, Hosts and Diseases 2024;62(3):351-364
The gut microbiome plays an essential role in host immune responses, including allergic reactions. However, commensal gut microbiota is extremely sensitive to antibiotics and excessive usage can cause microbial dysbiosis. Herein, we investigated how changes in the gut microbiome induced by ampicillin affected the production of IgG1 and IgG2a antibodies in mice subsequently exposed to Anisakis pegreffii antigens. Ampicillin treatment caused a notable change in the gut microbiome as shown by changes in both alpha and beta diversity indexes. In a 1-dimensional immunoblot using Anisakis-specific anti-mouse IgG1, a 56-kDa band corresponding to an unnamed Anisakis protein was detected using mass spectrometry analysis only in ampicillin-treated mice. In the Anisakis-specific anti-mouse IgG2a-probed immunoblot, a 70-kDa band corresponding to heat shock protein 70 (HSP70) was only detected in ampicillin-treated and Anisakis-immunized mice. A 2-dimensional immunoblot against Anisakis extract with immunized mouse sera demonstrated altered spot patterns in both groups. Our results showed that ampicillin treatment altered the gut microbiome composition in mice, changing the immunization response to antigens from A. pegreffii. This research could serve as a basis for developing vaccines or allergy immunotherapies against parasitic infections.
5.Alterations in immunized antigens of Anisakis pegreffii by ampicillin-induced gut microbiome changes in mice
Myungjun KIM ; Jun Ho CHOI ; Myung-hee YI ; Singeun OH ; Tai-Soon YONG ; Ju Yeong KIM
Parasites, Hosts and Diseases 2024;62(3):351-364
The gut microbiome plays an essential role in host immune responses, including allergic reactions. However, commensal gut microbiota is extremely sensitive to antibiotics and excessive usage can cause microbial dysbiosis. Herein, we investigated how changes in the gut microbiome induced by ampicillin affected the production of IgG1 and IgG2a antibodies in mice subsequently exposed to Anisakis pegreffii antigens. Ampicillin treatment caused a notable change in the gut microbiome as shown by changes in both alpha and beta diversity indexes. In a 1-dimensional immunoblot using Anisakis-specific anti-mouse IgG1, a 56-kDa band corresponding to an unnamed Anisakis protein was detected using mass spectrometry analysis only in ampicillin-treated mice. In the Anisakis-specific anti-mouse IgG2a-probed immunoblot, a 70-kDa band corresponding to heat shock protein 70 (HSP70) was only detected in ampicillin-treated and Anisakis-immunized mice. A 2-dimensional immunoblot against Anisakis extract with immunized mouse sera demonstrated altered spot patterns in both groups. Our results showed that ampicillin treatment altered the gut microbiome composition in mice, changing the immunization response to antigens from A. pegreffii. This research could serve as a basis for developing vaccines or allergy immunotherapies against parasitic infections.