1.Expression of TCF3 in Burkitt's Lymphoma and Its Proliferative Effect and Prognostic Significance.
Li-Hua DONG ; Jing-Jing HUANG ; Jing LIU ; Xue GAO ; Jian-Wei DU ; Yu-Fu LI
Journal of Experimental Hematology 2022;30(5):1435-1439
OBJECTIVE:
To observe the mutation and expression of TCF3 gene in Burkitt's lymphoma (BL), and explore its effect on the proliferation of BL cells and clinical efficacy and prognosis.
METHODS:
The mutation and expression of TCF3 in tumor tissues from BL patients were observed by the second-generation sequencing and real-time quantitative PCR. The proliferation and apoptosis of lymphoma cells after TCF3 knocked down were observed by siRNA interference technique and CCK-8 method. Survival analysis was used to observe the relationship between TCF3 mutation and the treatment efficacy and prognosis of BL patients.
RESULTS:
There were high frequency mutation rate (mutation rate was 23.7%) and high expression of TCF3 in BL patients. After TCF3 knocked down, cell proliferation was inhibited and apoptosis was promoted. In TCF3-siRNA group and control group, the cell proliferation rate at 48 h was (50.2±5.9)% and (96.6±11.4)%, and apoptosis rate was 30.1% and 1.5%, respectively, which showed significantly different between the two groups (P<0.001, P=0.005). The complete remission rate of patients with TCF3 mutation was low. The complete remission rate of mutant group and wild-type group was 44.4% and 82.8%, respectively (P=0.023). The 2-year progression-free survival rate and overall survival rate of the patients with TCF3 mutation was 55.6% and 61.0%, respectively, which was lower than 83.2% and 85.2% of the patients without mutation, but the differences were not statistically significant.
CONCLUSION
There are mutation and abnormal expression of TCF3 in patients with BL. Patients with TCF3 mutations have low remission rate and poor prognosis.
Apoptosis
;
Basic Helix-Loop-Helix Transcription Factors/therapeutic use*
;
Burkitt Lymphoma/genetics*
;
Humans
;
Prognosis
;
RNA, Small Interfering/therapeutic use*
;
Sincalide/therapeutic use*
2.IL-6 Regulates the Chemosensitivity of Drug-Resistant Multiple Myeloma Cell Lines to Bortezomib through STAT3/Notch Signaling Pathway.
Ying LIU ; Jing-Zhe SUI ; Li-Hua ZHU ; Yi DAI ; Hai-Qun DONG ; Peng CHENG
Journal of Experimental Hematology 2022;30(5):1474-1481
OBJECTIVE:
To investigate the effect of interleukin-6 (IL-6) on the chemosensitivity of drug-resistant multiple myeloma (MM) cell lines to bortezomib (BTZ) and its mechanism.
METHODS:
Peripheral blood samples were collected from patients with BTZ-resistant MM before and after treatment. Human MM cell lines KM3 and KM3/BTZ were cultured in vitro. ELISA was used to detect the content of IL-6 in peripheral blood of MM patients, KM3 and KM3/BTZ cells. CCK-8 assay was used to detect the drug sensitivity of KM3 and KM3 / BTZ cells to BTZ. KM3 / BTZ cells were divided into KM3/BTZ control group (normal culture for 48 h), IL-6 neutralizing antibody Anti-IL-6 group (500 ng/ml Anti-IL-6 treated for 48 h), BTZ group (300 ng/ml BTZ treated for 48 h), BTZ + Anti-IL-6 group (300 ng/ml BTZ and 500 ng/ml Anti-IL-6 treated for 48 h). The proliferation activity of KM3 / BTZ cells was detected by CCK-8 assay. The cell cycle distribution of KM3/BTZ cells was detected by flow cytometry. The apoptosis of KM3/BTZ cells was detected by Annexin V-FITC/PI double staining. The mRNA expression levels of IL-6, Notch1, signal transducer and activator of transcription 3 (STAT3) in KM3/BTZ cells were detected by real-time fluorescent quantitative PCR (qRT-PCR), and the protein expression levels of IL-6, Notch1, STAT3 in KM3/BTZ cells were detected by Western blot.
RESULTS:
The level of IL-6 in peripheral blood of patients with BTZ-resistant MM after treatment was significantly higher than that before treatment (P<0.05). The level of IL-6 in KM3/BTZ cells was significantly higher than that in KM3 cells (P<0.05). The sensitivity of KM3/BTZ cells to BTZ was significantly lower than that of KM3 cells (P<0.05), and the resistance index (RI) was 19.62. Anti-IL-6 and BTZ could inhibit the proliferation of KM3 / BTZ cells, block cell cycle, and induce apoptosis (P<0.05). Compared with single drug treatment, the combined effect of Anti-IL-6 and BTZ was more obvious on KM3/BTZ cells (P<0.05), and significantly down regulated the mRNA and protein expression of IL-6, Notch1 and STAT3 in KM3/BTZ cells (P<0.05).
CONCLUSION
Antagonizing IL-6 can increase the chemosensitivity of MM cells to BTZ, and IL-6 may reduce the sensitivity of MM cells to BTZ through STAT3/Notch signaling pathway.
Antibodies, Neutralizing/therapeutic use*
;
Apoptosis
;
Bortezomib/therapeutic use*
;
Cell Line, Tumor
;
Cell Proliferation
;
Humans
;
Interleukin-6/metabolism*
;
Multiple Myeloma/drug therapy*
;
RNA, Messenger
;
STAT3 Transcription Factor/metabolism*
;
Signal Transduction
;
Sincalide/therapeutic use*
3.Naringin Inhibits Colorectal Carcinogenesis by Inhibiting Viability of Colorectal Cancer Cells.
Juan-Ni ZENG ; Jin-Yu TAN ; Li MO
Chinese journal of integrative medicine 2023;29(8):707-713
OBJECTIVE:
To explore the therapeutic effect of naringin on colorectal cancer (CRC) and the related mechanism.
METHODS:
Cell counting kit-8 (CCK-8) assay and annexin V-FITC/PI assay were used to detect the effect of naringin (50-400 µg/mL) on cell proliferation and apoptosis of CRC cells, respectively. The scratch wound assay and transwell migration assay were used to assess the effect of naringin on CRC cell migration. Four-week-old male nude mice were injected with HCT116 cells subcutaneously to establish the tumor xenograft model. Naringin was injected intraperitoneally at 50 mg/(kg·d), with solvent and 5-fluorouracil treatment as control. The width and length of the tumors were measured and recorded every 6 days, and tumor tissues were photographed and weighed on the last day of the 24-d observation period. Immunohistochemical staining for caspase-3, proliferating cell nuclear antigen and TUNEL assay were used to evaluate the effect of naringin on cell proliferation and apoptosis in tumor tissues. The body weight, food and water intake of mice were recorded, and the major organs in different treatment groups were weighed on the last day and stained with hematoxylin and eosin for histological analysis. Meanwhile, the routine blood indicators were recorded.
RESULTS:
CCK-8 and annexin V-FITC/PI results confirmed that naringin (100, 200, and 400 µg/mL) could inhibit proliferation and promote apoptosis. The scratch wound assay and transwell migration assay results confirmed the inhibitory activity of naringin against CRC cells migration. In vivo results demonstrated the inhibitory effect of naringin on tumor growth with good bio-compatibility.
CONCLUSION
Naringin inhibited colorectal carcinogenesis by inhibiting viability of CRC cells.
Humans
;
Male
;
Animals
;
Mice
;
Mice, Nude
;
Sincalide/therapeutic use*
;
Cell Line, Tumor
;
Cell Proliferation
;
Apoptosis
;
Cell Movement
;
Carcinogenesis
;
Colorectal Neoplasms/pathology*
4.Effect of Dihydroartemisinin and Arsenic Trioxide on Apoptosis of Acute Myeloid Leukemia Cells.
Wei-Dong SUN ; Xin WANG ; Ying WANG ; Xiang-Min TONG
Journal of Experimental Hematology 2022;30(5):1337-1342
OBJECTIVE:
To investigate the effect of dihydroartemisinin (DHA) combined with arsenic trioxide (ATO) on the viability and apoptosis of acute myeloid leukemia (AML) FLT3-ITD mutant cell line MOLM13 and its mechanism.
METHODS:
MOLM13 cells were treated with DHA or ATO alone or in combination. The viability of MOLM13 cells was detected by CCK-8 assay, cell proliferation was observed by colony formation assay, cell apoptosis and reactive oxygen species (ROS) level were measured by flow cytometry, and the expression levels of proteins related to apoptosis were detected by Western blot.
RESULTS:
Compared with the control group, treatment with DHA and ATO alone or in combination could inhibit cell proliferation, activate ROS formation, and finally induce cell apoptosis. DHA in combination with ATO produced a synergistic effect. Western blot analysis showed that DHA combined with ATO could significantly upregulate the level of c-PARP and activate apoptosis via inhibition of Mcl-1 and FLT3-ITD.
CONCLUSION
DHA combined with ATO induces the apoptosis of FLT3-ITD AML cell line MOLM13 by inhibiting Mcl-1 pathway and activating FLT3-ITD protein degradation.
Apoptosis
;
Arsenic Trioxide/therapeutic use*
;
Artemisinins/therapeutic use*
;
Cell Line, Tumor
;
Humans
;
Leukemia, Myeloid, Acute/drug therapy*
;
Myeloid Cell Leukemia Sequence 1 Protein
;
Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use*
;
Reactive Oxygen Species/therapeutic use*
;
Sincalide/therapeutic use*
;
fms-Like Tyrosine Kinase 3
5.Cigarette Smoke Induces Gefitinib Resistance in NSCLC Cells via ROS/Sirt3/SOD2 Pathway.
Yawan ZI ; Ke LIAO ; Hong CHEN
Chinese Journal of Lung Cancer 2023;26(4):245-256
BACKGROUND:
Epidermal growth factor receptor (EGFR) gene mutations are the most common driver mutations in non-small cell lung cancer (NSCLC). To prolong the survival of the patients, EGFR tyrosine kinase inhibitors (TKIs) resistance in NSCLC is a major challenge that needs to be addressed urgently, and this study focuses on investigating the mechanism of cigarette smoke (CS) induced Gefitinib resistance in NSCLC.
METHODS:
PC-9 and A549 cells were cultured in vitro and treated with 1 µmol/L Gefitinib for 4 h and 10% cigarette smoke extract (CSE) for 48 h. Western blot was used to detect Sirtuin 3 (Sirt3) and superoxide dismutase 2 (SOD2) protein expressions; DCFH-DA probe was used to detect intracellular reactive oxygen species (ROS); CCK-8 kit was used to detect cell activity, and EdU was used to detect cell proliferation ability. Sirt3 overexpression plasmid (OV-Sirt3) was transfected in PC-9 and A549 cells and treated with 1 µmol/L Gefitinib for 4 h and 10% CSE for 48 h after N-acetylcysteine (NAC) action. The expressions of Sirt3 and SOD2 were detected by Western blot; the ROS level in the cells was detected by DCFH-DA probe, and the cell activity was detected by CCK-8.
RESULTS:
CSE induced an increase in the 50% inhibitory concentration (IC50) of both PC-9 and A549 cells to Gefitinib (P<0.01) and enhanced the proliferation of PC-9 and A549 cells, suggesting that CS induced Gefitinib resistance in NSCLC. ROS was involved in CSE-induced Gefitinib resistance (P<0.05). CSE induced low expressions of Sirt3 and SOD2 (P<0.01), and Sirt3/SOD2 was associated with poor prognosis in lung cancer patients (P<0.05). OV-Sirt3 in PC-9 and A549 cells reversed CSE-induced Gefitinib resistance (P<0.05) and significantly reduced ROS production. NAC reversed CSE-induced Gefitinib resistance in PC-9 and A549 cells (P<0.05).
CONCLUSIONS
The ROS/Sirt3/SOD2 pathway is involved in CS-induced Gefitinib resistance in NSCLC.
Humans
;
Gefitinib/therapeutic use*
;
Carcinoma, Non-Small-Cell Lung/metabolism*
;
Sirtuin 3/therapeutic use*
;
Lung Neoplasms/metabolism*
;
Reactive Oxygen Species/therapeutic use*
;
Antineoplastic Agents/therapeutic use*
;
Cigarette Smoking
;
Sincalide/therapeutic use*
;
ErbB Receptors/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Cell Line, Tumor
6.Antitumor Effect of Dihydroartemisinin on Diffuse Large B-Cell Lymphoma.
Yan ZHANG ; Li-Hui MA ; Li-Li DENG ; Zhuang-Miao ZHANG
Journal of Experimental Hematology 2022;30(5):1428-1434
OBJECTIVE:
To investigate the potential antitumor effect and its mechanism of dihydroartemisinin (DHA) on diffuse large B-cell lymphoma (DLBCL).
METHODS:
OCI-Ly7 cells were respectively treated with different concentrations of DHA (0, 12.5, 25, 50 and 100 μmol/L) , CCK-8 was used to detect the cells viability. Subsequently, OCI-Ly7 cells were divided into 5 groups : DHA 0,25,50,100 μmol / L and DHA (100 μmol / L) + Colivelin (STAT3 activator). Aldehyde dehydrogenase (ALDH) positive cells were sorted by flow cytometry, the sphere-forming ability of stem cells was detected. Transwell assay and scratch test were used to analyze the invasion and migration of cells. Western blot was used to detect the expression of migration and invasion-related proteins, as well as the phosphorylation levels of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3(STAT3).
RESULTS:
DHA induced obvious cytotoxicity to OCI-Ly7 cells. Compared with the control group, the stem cell-like properties, invasion and migration of OCI-Ly7 were significantly inhibited in DHA 50 μmol/L group and 100 μmol/L group, while the phosphorylation levels of JAK2 and STAT3 were significantly reduced. There was no significant difference in DHA 25 μmol/L group compared with the control group. Treated with Colivelin, the inhibition of DHA on OCI-Ly7 stem cell-like properties, invasion and migration was significantly reversed, and the expression of p-STAT3 was significantly up-regulated.
CONCLUSION
DHA has antitumor effect on DLBCL, and its mechanism may be through inhibiting the activation of JAK2/STAT3 pathway to inhibit the stem cell-like properties, invasion and migration of DLBCL cells.
Aldehyde Dehydrogenase/pharmacology*
;
Antineoplastic Agents/therapeutic use*
;
Artemisinins/pharmacology*
;
Cell Line, Tumor
;
Cell Proliferation
;
Humans
;
Janus Kinase 2
;
Lymphoma, Large B-Cell, Diffuse/pathology*
;
STAT3 Transcription Factor/metabolism*
;
Signal Transduction
;
Sincalide/pharmacology*
7.Effect and Mechanism of Atorvastatin on Reversing Drug Resistance in Leukemia by Regulating Glycolysis through PTEN/mTOR Pathway.
Journal of Experimental Hematology 2023;31(1):38-44
OBJECTIVE:
To investigate the influence and mechanism of atorvastatin on glycolysis of adriamycin resistant acute promyelocytic leukemia (APL) cell line HL-60/ADM.
METHODS:
HL-60/ADM cells in logarithmic growth phase were treated with different concentrations of atorvastatin, then the cell proliferation activity was measured by CCK-8 assay, the apoptosis was detected by flow cytometry, the glycolytic activity was checked by glucose consumption test, and the protein expressions of PTEN, p-mTOR, PKM2, HK2, P-gp and MRP1 were detected by Western blot. After transfection of PTEN-siRNA into HL-60/ADM cells, the effects of low expression of PTEN on atorvastatin regulating the behaviors of apoptosis and glycolytic metabolism in HL-60/ADM cells were further detected.
RESULTS:
CCK-8 results showed that atorvastatin could inhibit the proliferation of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.872, r=0.936), and the proliferation activity was inhibited most significantly when treated with 10 μmol/L atorvastatin for 24 h, which was decreased to (32.3±2.18)%. Flow cytometry results showed that atorvastatin induced the apoptosis of HL-60/ADM cells in a concentration-dependent manner (r=0.796), and the apoptosis was induced most notably when treated with 10 μmol/L atorvastatin for 24 h, which reached to (48.78±2.95)%. The results of glucose consumption test showed that atorvastatin significantly inhibited the glycolytic activity of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.915, r=0.748), and this inhibition was most strikingly when treated with 10 μmol/L atorvastatin for 24 h, reducing the relative glucose consumption to (46.53±1.71)%. Western blot indicated that the expressions of p-mTOR, PKM2, HK2, P-gp and MRP1 protein were decreased in a concentration-dependent manner (r=0.737, r=0.695, r=0.829, r=0.781, r=0.632), while the expression of PTEN protein was increased in a concentration-dependent manner (r=0.531), when treated with different concentrations of atorvastatin for 24 h. After PTEN-siRNA transfected into HL-60/ADM cells, it showed that low expression of PTEN had weakened the promoting effect of atorvastatin on apoptosis and inhibitory effect on glycolysis and multidrug resistance.
CONCLUSION
Atorvastatin can inhibit the proliferation, glycolysis, and induce apoptosis of HL-60/ADM cells. It may be related to the mechanism of increasing the expression of PTEN, inhibiting mTOR activation, and decreasing the expressions of PKM2 and HK2, thus reverse drug resistance.
Humans
;
Atorvastatin/pharmacology*
;
PTEN Phosphohydrolase/pharmacology*
;
Sincalide/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Leukemia, Promyelocytic, Acute/drug therapy*
;
Doxorubicin/pharmacology*
;
Apoptosis
;
RNA, Small Interfering/pharmacology*
;
Glycolysis
;
Glucose/therapeutic use*
;
Cell Proliferation