1.Identification and expression patterns of anterior silk gland specific cuticle protein Bm11721 in the silkworm (Bombyx mori).
Kang XIE ; Xin WANG ; Huifang CHEN ; Yi LI ; Qianru SONG ; Ping ZHAO
Chinese Journal of Biotechnology 2016;32(1):64-73
The silk gland of silkworm is the organ of silk protein synthesis and secretion. According to the morphological and functional differences, silk gland can be divided into anterior silk gland (ASG), middle silk gland (MSG) and posterior silk gland (PSG). ASG is the place for silk proteins conformation changes although it cannot synthetize silk proteins. ASG has narrow luminal structures and rigid wall which consists of chitin and cuticle proteins so that it can provide the shearing force which plays an important role in the silk protein conformation changes. The objective of this study is to identify the new chitin binding proteins in ASG of silkworm (Bombyx mori), and to analyze their expression patterns in different tissues. We identified a cuticle protein with chitin binding domain Bml1721 (GenBank Accession No. NM-001173285.1) by chitin affinity chromatography column. We also expressed the recombinant protein as inclusion body using the prokaryotic expression system, and then successfully purified the recombinant protein by nickel affinity chromatography column to generate the polyclonal antibodies. The expression patterns analysis in various tissues showed that both in transcriptional and protein levels Bm11721 was specifically expressed in ASG. Furthermore, the expression level of Bm 11721 protein was unchanged during the 5th instar. Immunofluorescence analysis revealed that Bm1 1721 was located in the ASG inner membrane. It is proposed that Bm11721 is a component of inner membrane and probably provides the shearing force for conformational changes.
Animals
;
Bombyx
;
genetics
;
metabolism
;
Chitin
;
metabolism
;
Insect Proteins
;
genetics
;
metabolism
;
Recombinant Proteins
;
biosynthesis
;
Silk
;
biosynthesis
2.Review of genetic diversity and breed identification of black-bone silky fowl.
Jiao LIU ; Tian ZHANG ; Lu FU ; Hui LI ; Lu-Qi HUANG ; Yuan YUAN
China Journal of Chinese Materia Medica 2022;47(8):2021-2027
Black-bone silky fowl, sweet, pungent, and hot-natured, is one of the valuable domesticated birds with special economic value in China's genebank of poultry breed, which has a long history of medicinal and edible uses. It has the effects of tonifying liver and kidney, replenishing Qi and blood, nourishing yin, clearing heat, regulating menstruation, invigorating spleen, and securing essence. Therefore, it has remarkable efficacy of enhancing physical strength, tonifying blood, and treating diabetes and gynecological diseases. Various local black-bone silky fowl breeds have been generated due to the differences in environmental conditions, breed selection, and rearing conditions in different areas of China, which are mainly concentrated in Taihe, Wan'an, and Ji'an in Jiangxi province and Putian, Jinjiang, and Yongchun in Fujian province. The indigenous chicken breeds in China have different body sizes, appearance, coat colors, etc. The complex lineages lead to extremely unstable genetic traits. The diverse breeds similar in appearance result in the confusion in the market of silky fowl breeds. With the rapid development of molecular biological technology, the genetics of black-bone silky fowls has been intensively studied. This article reviews the research progress of the germplasm resources, genetic diversity, and breed identification of black-bone silky fowl in China at the morphology, chromosome, protein, and DNA levels. Further, it introduces the principles, application status, and limitations of DNA markers such as mitochondrial DNA, microsatellite markers, and SNPs. This review provides a theoretical basis for the mining of elite trait genes and the protection and utilization of local black-bone silky fowl germplasm resources in China.
Animals
;
Chickens/genetics*
;
DNA, Mitochondrial
;
Female
;
Genetic Variation
;
Microsatellite Repeats
;
Polymorphism, Single Nucleotide
;
Silk/genetics*
3.Gene cloning and expression characteristics of vacuolar-type ATPase subunit B in Bombyx mori.
Huifang CHEN ; Xin WANG ; Kang XIE ; Yi LI ; Ping ZHAO
Chinese Journal of Biotechnology 2016;32(4):487-496
Vacuolar-type ATPase (V-ATPase), located in the membrane and organelle membrane, is one of important H⁺-transporting proteins. It keeps the proton balance by transporting H⁺ into vacuole, vesicle, or extracellular using the energy from ATP hydrolysis. The subunit B of the vacuolar-type ATPase (BmV-ATPase B) contains the ATP catalytic site, and plays an important role in this process. To study the function of V-ATPase B in Bombyx mori (BmV-ATPase B), we cloned its coding gene from the midgut of the 5th instar silkworm larvae. Then we constructed prokaryotic expression vector and produced the recombinant protein in E. coli. The recombinant protein was identified as BmV-ATPase B by mass spectrometry and purified using Ni-NTA affinity chromatography. This purified protein was used to immunize rabbit to generate polyclonal antibodies of BmV-ATPase B. Finally, the expression patterns of BmV-ATPase B in the silk gland were analyzed by western blotting and immunofluorescence. The full length CDS sequence of BmV-ATPase B was 1 473 bp. BmV-ATPase B was 55 kDa with a PI of 5.3. We analyzed the expression patterns of BmV-ATPase B in different sections of silk gland from the silkworm on the 3rd day of 5th instar and 1st day of wander stage by western blotting. BmV-ATPase B was expressed in all sections of the silk gland and it was abundant in the anterior silk gland (ASG) both in these two developmental stages. Furthermore, immunofluorescence indicated that BmV-ATPase B was located in the silk gland cells. Laser confocal scanning microscopy analysis revealed that BmV-ATPase B was mainly expressed in the cytomembrane of silk gland cells. These data elucidated the expression patterns of BmV-ATPase B in the silk gland of silkworm, which provides a good basis for further studies on the function of V-ATPase B in silk fiber formation.
Animals
;
Bombyx
;
enzymology
;
Cloning, Molecular
;
Escherichia coli
;
metabolism
;
Insect Proteins
;
genetics
;
metabolism
;
Larva
;
Recombinant Proteins
;
genetics
;
metabolism
;
Silk
;
Vacuolar Proton-Translocating ATPases
;
genetics
;
metabolism
4.Effect of regenerated silk fibroin film on transcription and expression of vascular endothelial growth factor gene.
Quan HUANG ; Jicheng YANG ; Jingcheng MIAO ; Chunyu LIU ; Yufeng XIE ; Weihua SHENG ; Mingzhong LI
Journal of Biomedical Engineering 2009;26(1):110-115
As a biomaterial to be used for reparation in the case of trauma, the silk fibroin, particularly its effect on the transcription and expression of VEGF gene, is a concern. In this study, the ECV304 cell's growth shape and growth curve on the regenerated silk fibroin film were observed, and its VEGF secretion level was measured by ELISA test. It was found that the regenerated silk fibroin film did not interfere with ECV304 cell's growth and function. The L929 cell transfected with human VEGF gene grew on the regenerated silk fibroin film; the real-time quantitative RT-PCR method and ELISA test were used for detecting the transcription and expression of VEGF gene. The results showed the regenerated silk fibroin film did not interfere with the transcription and expression of VEGF gene. Therefore, the regenerated silk fibroin film is a safe biomaterial for inducing vascularization with no untoward effect on the reparation of trauma.
Animals
;
Biocompatible Materials
;
pharmacology
;
Cell Line
;
Endothelial Cells
;
cytology
;
metabolism
;
Fibroins
;
pharmacology
;
Humans
;
Silk
;
pharmacology
;
Transcription, Genetic
;
Vascular Endothelial Growth Factor A
;
genetics
;
metabolism