2.Effect of miR-204 targeted regulation of DVL3 gene in silica-induced mouse lung epithelial cells.
Xin WANG ; Qiang ZENG ; Pei LI ; Ya GAO ; He Ren LOU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(5):328-332
Objective: To construct a recombinant lentiviral vector for mouse miR-204 overexpression, and to verify the targeted regulation of miR-204 and DVL3 in silica (SiO(2)) -induced mouse lung epithelial cells (MLE-12 cells) . Methods: In October 2019, the pre-miR-204 gene was amplified from the mouse genome by the polymerase chain reaction (PCR) method. After sequencing, the amplified product was cloned into the pLenti-CMV-EGFP lentiviral vector. The positive clones were identified by PCR screening and sequencing. The miR-204 overexpressed lentiviral vector was transfected into 293T cells, and lentiviral packaging and titer determination were performed. The experiment was divided into SiO(2) control group, virus control group, and miR-204 virus group, and the expressions of miR-204 and DVL3 gene were detected by real-time PCR. Results: The miR-204 lentiviral expression vector Lv-miR-204-5p was constructed and identified correctly by PCR and sequencing, and a virus dilution with a titer of 9.57×10(8) IU/ml was obtained. The results of real-time PCR showed that the expression of miR-204 in MLE-12 cells of the miR-204 virus group was higher than that of SiO(2) control group and virus control group, and the expression of DVL3 gene was lower than that of SiO(2) control group and virus control group, the differences were statistically significant (P<0.05) . Conclusion: Overexpression of miR-204 by lentiviral vector may inhibit the expression of DVL3 gene in silica-induced mouse lung epithelial cells.
Animals
;
Epithelial Cells
;
Genetic Vectors
;
Lentivirus/metabolism*
;
Lung
;
Mice
;
MicroRNAs/metabolism*
;
Silicon Dioxide/toxicity*
;
Transfection
3.The Effect of Silica Dust Exposure on the Serum Clara Cell Protein 16 Levels in Chinese Workers.
Jing LIU ; Hai Yan SONG ; Bao Li ZHU ; Li Ping PAN ; Xiao Lian QIAN
Biomedical and Environmental Sciences 2019;32(1):47-50
Aged
;
Alcohol Drinking
;
blood
;
Asian Continental Ancestry Group
;
Biomarkers
;
Dust
;
Humans
;
Male
;
Middle Aged
;
Occupational Exposure
;
Silicon Dioxide
;
toxicity
;
Silicosis
;
blood
;
Smoking
;
blood
;
Uteroglobin
;
blood
4.The Role of Fibrocyte in the Pathogenesis of Silicosis.
Juan LI ; Wu YAO ; Jian Yong HOU ; Lin ZHANG ; Lei BAO ; Hui Ting CHEN ; Di WANG ; Zhong Zheng YUE ; Yi Ping LI ; Miao ZHANG ; Xing Hao YU ; Jian Hui ZHANG ; Ya Qian QU ; Chang Fu HAO
Biomedical and Environmental Sciences 2018;31(4):311-316
Exposure to free silica induces silicosis and myofibroblasts are regarded as primary effector cells. Fibrocytes can differentiate into myofibroblast. Therefore, the present study was designed to investigate whether fibrocytes participate in silicosis. The rat model of silicosis was established. Hematoxylin-eosin stainings and Masson stainings were used to evaluate the histopathology and collagen deposition. Flow cytometry and immunofluorescence were performed to detect the number of fibrocytes and their contribution to myofibroblasts. Results showed that fibrocytes participate in silicosis. Trend analysis of different sources of myofibroblasts during silicosis indicated that fibrocytes and lung type II epithelial cell-derived myofibroblasts play an important role in the early stage of silicosis, while resident lung fibroblast-derived myofibroblasts play a predominant role during the fibrosis formative period.
Animals
;
Disease Models, Animal
;
Lung
;
cytology
;
Myofibroblasts
;
drug effects
;
pathology
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Silicon Dioxide
;
toxicity
;
Silicosis
;
etiology
;
pathology
5.Subchronic Oral Toxicity of Silica Nanoparticles and Silica Microparticles in Rats.
Chun Lai LIANG ; Qian XIANG ; Wen Ming CUI ; Jin FANG ; Na Na SUN ; Xiao Peng ZHANG ; Yong Ning LI ; Hui YANG ; Zhou YU ; Xu Dong JIA
Biomedical and Environmental Sciences 2018;31(3):197-207
OBJECTIVETo investigate the subchronic oral toxicity of silica nanoparticles (NPs) and silica microparticles (MPs) in rats and to compare the difference in toxicity between two particle sizes.
METHODSSprague-Dawley rats were randomly divided into seven groups: the control group; the silica NPs low-, middle-, and high-dose groups; and the silica MPs low-, middle-, and high-dose groups [166.7, 500, and 1,500 mg/(kg•bw•day)]. All rats were gavaged daily for 90 days, and deionized water was administered to the control group. Clinical observations were made daily, and body weights and food consumption were determined weekly. Blood samples were collected on day 91 for measurement of hematology and clinical biochemistry. Animals were euthanized for necropsy, and selected organs were weighed and fixed for histological examination. The tissue distribution of silicon in the blood, liver, kidneys, and testis were determined.
RESULTSThere were no toxicologically significant changes in mortality, clinical signs, body weight, food consumption, necropsy findings, and organ weights. Differences between the silica groups and the control group in some hematological and clinical biochemical values and histopathological findings were not considered treatment related. The tissue distribution of silicon was comparable across all groups.
CONCLUSIONOur study demonstrated that neither silica NPs nor silica MPs induced toxicological effects after subchronic oral exposure in rats.
Administration, Oral ; Animals ; Dose-Response Relationship, Drug ; Female ; Male ; Nanoparticles ; toxicity ; Particle Size ; Rats ; Rats, Sprague-Dawley ; Silicon Dioxide ; toxicity ; Toxicity Tests, Subchronic
6.Pulmonary Toxicity in Rats Caused by Exposure to Intratracheal Instillation of SiO2 Nanoparticles.
Hong YANG ; Qiu Yun WU ; ; Ming Yue LI ; Can Shan LAO ; Ying Jian ZHANG ;
Biomedical and Environmental Sciences 2017;30(4):264-279
OBJECTIVEThe effect of the silica nanoparticles (SNs) on lungs injury in rats was investigated to evaluate the toxicity and possible mechanisms for SNs.
METHODSMale Wistar rats were instilled intratracheally with 1 mL of saline containing 6.25, 12.5, and 25.0 mg of SNs or 25.0 mg of microscale SiO2 particles suspensions for 30 d, were then sacrificed. Histopathological and ultrastructural change in lungs, and chemical components in the urine excretions were investigated by light microscope, TEM and EDS. MDA, NO and hydroxyproline (Hyp) in lung homogenates were quantified by spectrophotometry. Contents of TNF-α, TGF-β1, IL-1β, and MMP-2 in lung tissue were determined by immunohistochemistry staining.
RESULTSThere is massive excretion of Si substance in urine. The SNs lead pulmonary lesions of rise in lung/body coefficients, lung inflammation, damaged alveoli, granuloma nodules formation, and collagen metabolized perturbation, and lung tissue damage is milder than those of microscale SiO2 particles. The SNs also cause increase lipid peroxidation and high expression of cytokines.
CONCLUSIONThe SNs result into pulmonary fibrosis by means of increase lipid peroxidation and high expression of cytokines. Milder effect of the SNs on pulmonary fibrosis comparing to microscale SiO2 particles is contributed to its elimination from urine due to their ultrafine particle size.
Air Pollutants ; toxicity ; Animals ; Dose-Response Relationship, Drug ; Lung ; drug effects ; pathology ; ultrastructure ; Male ; Microscopy, Electron, Transmission ; Nanoparticles ; toxicity ; Pulmonary Fibrosis ; chemically induced ; metabolism ; pathology ; Random Allocation ; Rats ; Rats, Wistar ; Silicon Dioxide ; toxicity ; Specific Pathogen-Free Organisms ; Spectrometry, X-Ray Emission ; Urine ; chemistry
7.Crystalline Silica Promotes Rat Fibrocyte Differentiation in Vitro, and Fibrocytes Participate in Silicosis in Vivo.
Juan LI ; Wu YAO ; Jian Yong HOU ; Lin ZHANG ; Lei BAO ; Hui Ting CHEN ; Di WANG ; Zhong Zheng YUE ; Yi Ping LI ; Miao ZHANG ; Chang Fu HAO
Biomedical and Environmental Sciences 2017;30(9):649-660
OBJECTIVEThe aim of this study was to investigate the effects of SiO2 on fibrocytes and whether fibrocytes participate in silicosis in vivo.
METHODSA macrophagocyte (AM)/fibrocyte coculture system was established, and AMs were treated with 100 μg/mL SiO2. Flow cytometry was used to detect the number of fibrocytes. Real-time PCR was performed to measure the expression of collagen I, collagen III, and α-SMA mRNA. The levels of collagen I, collagen III, and TGF-β1 protein were determined by ELISA. Immunohistochemical staining was performed to measure α-SMA protein expression. A rat silicosis model was induced by intratracheal instillation of SiO2. Lung histopathological evaluation was conducted using HE and Masson's trichrome staining after 1 and 9 weeks. The number of fibrocytes in peripheral blood or lung tissue of rat was detected by flow cytometry. Double-color immunofluorescence was applied to identify fibrocytes in the lung tissue.
RESULTSPeripheral blood monocytes were found to differentiate into fibrocytes in vitro in a time-dependent manner, and exposure to crystalline silica might potentiate fibrocyte differentiation. In addition, fibrocytes were able to migrate from peripheral blood to the lung tissue, and the number of fibrocytes was increased after SiO2 exposure.
CONCLUSIONSilica exposure potentiates fibrocyte differentiation, and fibrocytes may participate in silicosis in vivo.
Animals ; Cell Differentiation ; drug effects ; Collagen ; metabolism ; Fibroblasts ; drug effects ; Lung ; metabolism ; pathology ; Male ; Rats ; Silicon Dioxide ; toxicity ; Silicosis ; metabolism ; pathology
8.Role of Endoplasmic Reticulum Stress in Silica-induced Apoptosis in RAW264.7 Cells.
Yong Bin HU ; Xia WU ; Xiao Feng QIN ; Lei WANG ; Pin Hua PAN
Biomedical and Environmental Sciences 2017;30(8):591-600
OBJECTIVEWe investigated the role of endoplasmic reticulum stress (ERS) in silica-induced apoptosis in alveolar macrophages in vitro.
METHODSRAW264.7 cells were incubated with 200 μg/mL silica for different time periods. Cell viability was assayed by the MTT assay. Cell apoptosis was evaluated by DAPI staining, flow cytometry analysis, and Western blot analysis of caspase-3. Morphological changes in the endoplasmic reticulum were observed by transmission electron microscopy. The expression of ERS markers binding protein (BiP) and CCAAT-enhancer-binding protein homologous protein (CHOP) was examined by Western blotting and real-time PCR. As an inhibitor of ERS, 4-phenylbutyric acid (4-PBA) was used in the experiments.
RESULTSSilica exposure induced nuclear condensation and caspase-3 expression in RAW264.7 cells. The number of apoptotic cells increased after silica exposure in a time-dependent manner. Silica treatment induced expansion of the endoplasmic reticulum. In addition, the expression of BiP and CHOP increased in silica-stimulated cells. Furthermore, 4-PBA treatment inhibited silica-induced endoplasmic reticulum expansion and the expression of BiP and CHOP. Moreover, 4-PBA treatment attenuated nuclear condensation, reduced apoptotic cells, and downregulated caspase-3 expression in silica-stimulated cells.
CONCLUSIONSilica-induced ERS is involved in the apoptosis of alveolar macrophages.
Animals ; Apoptosis ; drug effects ; Butylamines ; Cell Survival ; drug effects ; Endoplasmic Reticulum Stress ; physiology ; Mice ; RAW 264.7 Cells ; Silicon Dioxide ; toxicity
9.Expression of Peroxiredoxins and Pulmonary Surfactant Protein A Induced by Silica in Rat Lung Tissue.
Nan LIU ; Ling XUE ; Yi GUAN ; Qing Zhao LI ; Fu Yuan CAO ; Shu Lan PANG ; Wei Jun GUAN
Biomedical and Environmental Sciences 2016;29(8):584-588
Silicosis is one of the most serious occupational diseases in China and dates back to centuries ago. In this study, we successfully established a rat model of silicosis by intratracheal silica injection for 28 days and determined hydroxyproline levels to evaluate collagen metabolism in lung homogenates. Oxidative stress status was evaluated by detecting catalase and glutathione peroxidase activities. Expression levels of peroxiredoxins (Prx I and Prx VI) were detected by Western blotting. Pulmonary surfactant protein A (SP-A) levels in rat serum and lung tissue were analyzed by ELISA, and SP-A and Prx expression levels in lung tissues were detected by immunohistochemistry. The results suggest that Prx proteins may be involved in pulmonary fibrosis induced by silica. Downregulation of SP-A expression caused due to silica is an important factor in the occurrence and development of silicosis.
Animals
;
Disease Models, Animal
;
Humans
;
Lung
;
enzymology
;
metabolism
;
Male
;
Oxidative Stress
;
Peroxiredoxin VI
;
genetics
;
metabolism
;
Peroxiredoxins
;
genetics
;
metabolism
;
Pulmonary Surfactant-Associated Protein A
;
genetics
;
metabolism
;
Rats
;
Silicon Dioxide
;
toxicity
;
Silicosis
;
genetics
;
metabolism
10.Transcriptional Factor Snail Mediates Epithelial-Mesenchymal Transition in Human Bronchial Epithelial Cells Induced by Silica.
Yong Bin HU ; Fei Feng LI ; Zheng Hao DENG ; Pin Hua PAN
Biomedical and Environmental Sciences 2015;28(7):544-548
Epithelial-mesenchymal transition (EMT) plays an important role in fibrotic diseases. We have previously showed that silica induces EMT in human bronchial epithelial cells (BECs); however, the underlying mechanism of silica-induced EMT is poorly understood. In the present study, we investigated the role of Snail in silica-induced EMT in human BECs in vitro. Human BECs were treated with silica at various concentrations and incubation times. Then MTT assay, western blot, electrophoretic mobility shift assay (EMSA), and small interfering RNA (siRNA) transfection were performed. We found that silica increased the expression and DNA binding activity of Snail in human BECs. SNAI siRNA inhibited the silica-induced expression of Snail. Moreover, SNAI siRNA upregulated the expression of epithelial marker E-cadherin, but attenuated the expression of mesenchymal marker α-smooth muscle actin and vimentin in silica-stimulated cells. These results suggest that Snail mediates the silica-induced EMT in human BECs.
Actins
;
metabolism
;
Blotting, Western
;
Bronchi
;
cytology
;
drug effects
;
metabolism
;
Cadherins
;
metabolism
;
Cell Culture Techniques
;
Cell Line
;
Cell Survival
;
drug effects
;
Electrophoretic Mobility Shift Assay
;
Epithelial Cells
;
cytology
;
drug effects
;
metabolism
;
Epithelial-Mesenchymal Transition
;
drug effects
;
Humans
;
Particle Size
;
RNA, Small Interfering
;
genetics
;
Silicon Dioxide
;
toxicity
;
Snail Family Transcription Factors
;
Transcription Factors
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail