1.Efficacy of three-dimensional visualization technology in the precision diagnosis and treatment for primary liver cancer: a retrospective multicenter study of 1 665 cases in China
Chihua FANG ; Peng ZHANG ; Weiping ZHOU ; Jian ZHOU ; Chaoliu DAI ; Jingfeng LIU ; Weidong JIA ; Xiao LIANG ; Silüe ZENG ; Sai WEN
Chinese Journal of Surgery 2020;58(5):375-382
Objective:To evaluate the efficacy of three-dimensional(3D) visualization technology in the precision diagnosis and treatment for primary liver cancer.Methods:A total of 1 665 patients with primary liver cancer who admitted to seven medical centers in China between January 2009 to January 2019, diagnosed and treated by 3D visualization protocol were analyzed, and their clinical data were retrospectively reviewed. There were 1 255 males(75.4%) and 410 females(24.6%), with age of (52.9±11.9) years (range: 18 to 86 years). The acquisition of high-quality CT images with submillimeter spatial resolution were conducted using a quality control system. By means of homogenization methods, 3D reconstruction and 3D visualization analysis were performed. Postoperative observation: pathology reports, microvascular invasion, perioperative complications and follow-up. SPSS 25.0 statistical software was used for statistical description and analysis of clinical data. Kaplan-Meier curve was used to calculate overall survival and disease-free survival rate.Results:(1)In the sample of 1 265 patients, 3D reconstructed models clearly displayed as follows. tumor size: ≤2 cm in 155 cases (9.31%), >2 cm to 5 cm in 551 cases (33.09%), >5 cm to 10 cm in 636 cases (38.20%), >10 cm in 323 cases (19.40%). (2) Classification of hepatic blood vessels. Hepatic artery: type Ⅰ(normal type) in 1 494 cases(89.73%),variant hepatic artery in 171 cases (10.27%), including type Ⅱ in 35 cases, type Ⅲ in 38 cases, and other types in 98 cases. Hepatic vein: type Ⅰ (normal) in 1 195 cases (71.77%),variant hepatic veins in 470 cases(28.23%), including type Ⅱ in 376 cases and type Ⅲ in 94 cases. Portal vein:normal type in 1 315 cases (78.98%), variant portal veins in 350 cases (21.02%), including type Ⅰ in 189 cases, type Ⅱin 103 cases, type Ⅲ in 50 cases, type Ⅳ in 8 cases. Hepatic artery variation coexisting with portal vein variation in 24 cases (1.44%). Hepatic vein variation coexisting with portal vein variation in 113 cases (6.79%). Three types of vascular variation in 4 cases (0.24%), including coexistence of type Ⅱ hepatic artery variation or type Ⅰ portal vein variation with type Ⅲ hepatic vein variation in 2 cases,coexistence of type Ⅲ hepatic artery variation or type Ⅲ portal vein variation with type Ⅱ hepatic vein variation in 2 cases. (3) Preoperative liver volume calculation:1 499.3 (514.4)ml (range:641.7 to 6 637.0 ml) of total liver volume, including 479.1 (460.1) ml (range:10.5 to 2 086.8 ml) for liver resection and 959.9 (460.4)ml (range:306.1 to 5 638.0 ml) for residual function. (4)Operative methods: anatomical hepatectomy in 1 458 cases (87.57%); non-anatomic hepatectomy in 207 cases (12.43%). (5)the median operation time was 285(165)minutes (range: 40 to720 minutes). (6)The median intraoperative blood loss was 200(250)ml (range:10 to 4 200 ml) and 346 cases (20.78%) had intraoperative transfusion. (7)Pathology reports: hepatocellular carcinoma in 1 371 cases (82.34%), cholangiocarcinoma in 260 cases (15.62%) and mixed hepatocellular carcinoma in 34 cases (2.04%). Microvascular invasion: M0 in 199 cases, M1 in 64 cases, and M2 in 27 cases. (8)Postoperative complications in 207 cases (12.43%), including Clavien-Dindo grade Ⅰ or Ⅱ in 57 cases, grade Ⅲ or Ⅳ in 147 cases and grade Ⅴ in 3 cases.There were 13 cases (0.78%) of liver failure and 3 cases (0.18%) of perioperative death. (9) The follow-up time was 3.0 to 96.0 months, with a median time of 21.0(17.8) years. The overall 3-year survival and disease-free survival rates were 80.0% and 56.5%, respectively. The overall 5-year survival and disease-free survival rates were 59.7% and 30.0%, respectively.Conclusion:3D visualization technology plays an important role in realizing accurate diagnosis of anatomical location and morphology of primary liver cancer, improving the success rate of surgery and reducing the incidence of complications.
2.Efficacy of three-dimensional visualization technology in the precision diagnosis and treatment for primary liver cancer: a retrospective multicenter study of 1 665 cases in China
Chihua FANG ; Peng ZHANG ; Weiping ZHOU ; Jian ZHOU ; Chaoliu DAI ; Jingfeng LIU ; Weidong JIA ; Xiao LIANG ; Silüe ZENG ; Sai WEN
Chinese Journal of Surgery 2020;58(5):375-382
Objective:To evaluate the efficacy of three-dimensional(3D) visualization technology in the precision diagnosis and treatment for primary liver cancer.Methods:A total of 1 665 patients with primary liver cancer who admitted to seven medical centers in China between January 2009 to January 2019, diagnosed and treated by 3D visualization protocol were analyzed, and their clinical data were retrospectively reviewed. There were 1 255 males(75.4%) and 410 females(24.6%), with age of (52.9±11.9) years (range: 18 to 86 years). The acquisition of high-quality CT images with submillimeter spatial resolution were conducted using a quality control system. By means of homogenization methods, 3D reconstruction and 3D visualization analysis were performed. Postoperative observation: pathology reports, microvascular invasion, perioperative complications and follow-up. SPSS 25.0 statistical software was used for statistical description and analysis of clinical data. Kaplan-Meier curve was used to calculate overall survival and disease-free survival rate.Results:(1)In the sample of 1 265 patients, 3D reconstructed models clearly displayed as follows. tumor size: ≤2 cm in 155 cases (9.31%), >2 cm to 5 cm in 551 cases (33.09%), >5 cm to 10 cm in 636 cases (38.20%), >10 cm in 323 cases (19.40%). (2) Classification of hepatic blood vessels. Hepatic artery: type Ⅰ(normal type) in 1 494 cases(89.73%),variant hepatic artery in 171 cases (10.27%), including type Ⅱ in 35 cases, type Ⅲ in 38 cases, and other types in 98 cases. Hepatic vein: type Ⅰ (normal) in 1 195 cases (71.77%),variant hepatic veins in 470 cases(28.23%), including type Ⅱ in 376 cases and type Ⅲ in 94 cases. Portal vein:normal type in 1 315 cases (78.98%), variant portal veins in 350 cases (21.02%), including type Ⅰ in 189 cases, type Ⅱin 103 cases, type Ⅲ in 50 cases, type Ⅳ in 8 cases. Hepatic artery variation coexisting with portal vein variation in 24 cases (1.44%). Hepatic vein variation coexisting with portal vein variation in 113 cases (6.79%). Three types of vascular variation in 4 cases (0.24%), including coexistence of type Ⅱ hepatic artery variation or type Ⅰ portal vein variation with type Ⅲ hepatic vein variation in 2 cases,coexistence of type Ⅲ hepatic artery variation or type Ⅲ portal vein variation with type Ⅱ hepatic vein variation in 2 cases. (3) Preoperative liver volume calculation:1 499.3 (514.4)ml (range:641.7 to 6 637.0 ml) of total liver volume, including 479.1 (460.1) ml (range:10.5 to 2 086.8 ml) for liver resection and 959.9 (460.4)ml (range:306.1 to 5 638.0 ml) for residual function. (4)Operative methods: anatomical hepatectomy in 1 458 cases (87.57%); non-anatomic hepatectomy in 207 cases (12.43%). (5)the median operation time was 285(165)minutes (range: 40 to720 minutes). (6)The median intraoperative blood loss was 200(250)ml (range:10 to 4 200 ml) and 346 cases (20.78%) had intraoperative transfusion. (7)Pathology reports: hepatocellular carcinoma in 1 371 cases (82.34%), cholangiocarcinoma in 260 cases (15.62%) and mixed hepatocellular carcinoma in 34 cases (2.04%). Microvascular invasion: M0 in 199 cases, M1 in 64 cases, and M2 in 27 cases. (8)Postoperative complications in 207 cases (12.43%), including Clavien-Dindo grade Ⅰ or Ⅱ in 57 cases, grade Ⅲ or Ⅳ in 147 cases and grade Ⅴ in 3 cases.There were 13 cases (0.78%) of liver failure and 3 cases (0.18%) of perioperative death. (9) The follow-up time was 3.0 to 96.0 months, with a median time of 21.0(17.8) years. The overall 3-year survival and disease-free survival rates were 80.0% and 56.5%, respectively. The overall 5-year survival and disease-free survival rates were 59.7% and 30.0%, respectively.Conclusion:3D visualization technology plays an important role in realizing accurate diagnosis of anatomical location and morphology of primary liver cancer, improving the success rate of surgery and reducing the incidence of complications.
3.Application of 3D visualization and 3D printing in individualized precision surgery for Bismuth-Corlette type Ⅲ and Ⅳ hilar cholangiocarcinoma.
Ning ZENG ; Jian YANG ; Nan XIANG ; Sai WEN ; Silüe ZENG ; Shuo QI ; Wen ZHU ; Haoyu HU ; Chihua FANG
Journal of Southern Medical University 2020;40(8):1172-1177
OBJECTIVE:
To explore the application of 3D visualization and 3D printing in individualized precision surgical treatment of Bismuth-Corlette type Ⅲ and Ⅳ hilar cholangiocarcinoma.
METHODS:
We retrospectively analyzed the data of 10 patients with hilar cholangiocarcinoma undergoing surgeries under the guidance of 3D visualization and 3D printing in the Department of Hepatobiliary Surgery, Zhujiang Hospital from May 2016 to March 2019. Thin-section CT data of the patients were collected for 3D reconstruction and 3D printing, and the 3D printed models were used for observing the 3D relationship of tumor with the intrahepatic bile duct, hepatic artery, portal vein and hepatic vein system and for performing preoperative simulated surgery and surgical planning. The 3D printed models were subsequently used for real-time intraoperative navigation to guide surgeries in the operating room.
RESULTS:
3D visualization models were successfully reconstructed for all the 10 patients and printed into 3D models. The 3D visualization types in Bismuth-Corlette classification included type Ⅲa (4 cases), type Ⅲb (4 cases), and type Ⅳ (2 cases); 4 patients showed portal vein variation, 3 had hepatic artery variation, and 2 had both portal vein and hepatic artery variations. Two patients were found to have trifurcation type of portal vein variation, one had "I-shaped" variation, and one showed the absence of the right anterior branch of the portal vein; 3 patients had hepatic artery variations with the left hepatic artery originating from the left gastric artery (1 case) and the right hepatic artery originating from the superior mesenteric artery (2 cases). Four patients with type Ⅲb underwent left hepatectomy; 4 with type Ⅲa received right hepatectomy; 1 patient with of type Ⅳ received peripheral hepatic resection and another underwent left hepatectomy. The results of preoperative 3D reconstruction, 3D printed model and preoperative planning were consistent with the intraoperative findings. The operative time was 452±75.12 min with a mean intraoperative blood loss of 356±62.35 mL and a mean hospital stay of 15 ± 4.61 days in these cases. One patient had bile leakage and 3 patients had pleural effusion postoperatively, and they were discharged after drainage and medications. No liver failure or death occurred in these cases perioperatively.
CONCLUSIONS
3D visualization and 3D printing can facilitate accurate preoperative assessment, surgical planning and surgical procedure optimization for Bismuth-Corlette type Ⅲ and Ⅳ hilar cholangiocarcinoma to improve surgical safety and reduce surgical risks especially in cases of intrahepatic vascular variations.
Bile Duct Neoplasms
;
Bismuth
;
Cholangiocarcinoma
;
Hepatectomy
;
Humans
;
Imaging, Three-Dimensional
;
Klatskin Tumor
;
Liver Neoplasms
;
Portal Vein
;
Printing, Three-Dimensional
;
Retrospective Studies
4. Application of augmented-reality surgical navigation technology combined with ICG molecular fluorescence imaging in laparoscopic hepatectomy
Chihua FANG ; Peng ZHANG ; Huoling LUO ; Wen ZHU ; Silüe ZENG ; Haoyu HU ; Nan XIANG ; Jian YANG ; Ning ZENG ; Yingfang FAN ; Fucang JIA ; Lianxin LIU
Chinese Journal of Surgery 2019;57(8):578-584
Objective:
To study the application value of augmented-reality (AR) surgical navigation technology combined with indocyanine green (ICG) molecular fluorescence imaging in three-dimensional (3D) laparoscopic hepatectomy.
Methods:
The clinical data of forty-eight patients who had undergone 3D laparoscopic hepatectomy for hepatocellular carcinoma at First Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University from January 2018 to April 2019 were retrospectively analyzed.The patients were divided into two groups: the group of 3D laparoscopic hepatectomy navigated by augment reality technology combined with ICG molecular fluorescence imaging (Group A) , and group of conventional 3D laparoscopic hepatectomy (Group B) . Patients in Group A (