1.Cefiderocol: a novel siderophore cephalosporin against multi-drug resistant Gram-negative bacilli infections.
Junyang KUAI ; Xiaojuan WANG ; Hui WANG
Chinese Journal of Biotechnology 2022;38(3):990-1003
Antimicrobial resistance is one of the critical public health issues in the world. There is an urgent need to develop effective broad-spectrum antibiotics to treat the infection of multi-drug resistant Gram-negative bacilli. Cefiderocol, developed by the Shionogi Inc. in Japan, is a new type of iron carrier cephalosporin antibiotics, which overcomes the drug resistance of Gram-negative bacilli due to the down-regulation of outer membrane pore protein and the up-regulation of efflux pump, and has good stability to serine- and metallo-carbapenemases. This drug has a broad spectrum and strong antibacterial activity against carbapenem-resistant Enterobacteriaceae (CRE), Pseudomonas aeruginosa, Acinetobacter baumannii, and Stenotrophomonas maltophilia. Cefiderocol can be used to treat complex urinary tract infections (including pyelonephritis), hospital-acquired pneumonia, and ventilator-associated pneumonia. By summarizing the chemical structure, antibacterial mechanism, in vitro antibacterial activity, pharmacokinetics, pharmacodynamics, and clinical treatment of cefiderocol, this review shows the application potential of cefiderocol as a new iron carrier cephalosporin in the treatment of multi-drug resistant Gram-negative bacilli infections.
Cephalosporins/therapeutic use*
;
Gram-Negative Bacteria
;
Microbial Sensitivity Tests
;
Siderophores/pharmacology*
2.A zero-sum game or an interactive frame? Iron competition between bacteria and humans in infection war.
Zhenchao WU ; Jiqi SHAO ; Jiajia ZHENG ; Beibei LIU ; Zhiyuan LI ; Ning SHEN
Chinese Medical Journal 2022;135(16):1917-1926
Iron is an essential trace element for both humans and bacteria. It plays a vital role in life, such as in redox reactions and electron transport. Strict regulatory mechanisms are necessary to maintain iron homeostasis because both excess and insufficient iron are harmful to life. Competition for iron is a war between humans and bacteria. To grow, reproduce, colonize, and successfully cause infection, pathogens have evolved various mechanisms for iron uptake from humans, principally Fe 3+ -siderophore and Fe 2+ -heme transport systems. Humans have many innate immune mechanisms that regulate the distribution of iron and inhibit bacterial iron uptake to help resist bacterial invasion and colonization. Meanwhile, researchers have invented detection test strips and coupled antibiotics with siderophores to create tools that take advantage of this battle for iron, to help eliminate pathogens. In this review, we summarize bacterial and human iron metabolism, competition for iron between humans and bacteria, siderophore sensors, antibiotics coupled with siderophores, and related phenomena. We also discuss how competition for iron can be used for diagnosis and treatment of infection in the future.
Humans
;
Siderophores/metabolism*
;
Iron/metabolism*
;
Bacteria
;
Anti-Bacterial Agents/pharmacology*
;
Biological Transport
3.Desferoxamine preconditioning protects against cerebral ischemia in rats by inducing expressions of hypoxia inducible factor 1 alpha and erythropoietin.
Yun-Xia LI ; Su-Ju DING ; Lin XIAO ; Wei GUO ; Qing ZHAN
Neuroscience Bulletin 2008;24(2):89-95
OBJECTIVETo investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1alpha (HIF-1alpha) and erythropoietin (EPO) in vivo and in vitro.
METHODSRat model of cerebral ischemia was established by middle cerebral artery occlusion with or without DFO administration. Infarct size was examined by TTC staining, and the neurological severity score was evaluated according to published method. Cortical neurons were cultured under ischemia stress which was mimicked by oxygen-glucose deprivation (OGD), and the neuron damage was assessed by MTT assay. Immunofluorescent staining was employed to detect the expressions of HIF-1alpha and EPO.
RESULTSThe protective effect induced by DFO (decreasing the infarction volume and ameliorating the neurological function) appeared at 2 d after administration of DFO (post-DFO), lasted until 7 d and disappeared at 14 d (P < 0.05); the most effective action was observed at 3 d post-DFO. DFO induced tolerance of cultured neurons against OGD: neuronal viability was increased 23%, 34%, 40%, 48% and 56% at 8 h, 12 h, 24 h, 36 h, and 48 h, respectively, post-DFO (P < 0.05). Immunofluorescent staining found that HIF-1alpha and EPO were upregulated in the neurons of rat brain at 3 d and 7 d post-DFO; increase of HIF-1alpha and EPO appeared in cultured cortex neurons at 36 h and 48 h post-DFO.
CONCLUSIONDFO induced tolerance against focal cerebral ischemia in rats, and exerted protective effect on OGD cultured cortical neurons. DFO significant induced the expression of HIF-1alpha and EPO both in vivo and in vitro. DFO preconditioning can protect against cerebral ischemia, which may be associated with the synthesis of HIF-1alpha and EPO.
Animals ; Brain Ischemia ; drug therapy ; metabolism ; physiopathology ; Cells, Cultured ; Cerebral Infarction ; drug therapy ; metabolism ; physiopathology ; Deferoxamine ; pharmacology ; therapeutic use ; Disease Models, Animal ; Erythropoietin ; metabolism ; Fluorescent Antibody Technique ; Hypoxia-Inducible Factor 1, alpha Subunit ; drug effects ; metabolism ; Hypoxia-Ischemia, Brain ; drug therapy ; metabolism ; physiopathology ; Infarction, Middle Cerebral Artery ; drug therapy ; metabolism ; physiopathology ; Iron ; metabolism ; Ischemic Preconditioning ; methods ; Nerve Degeneration ; drug therapy ; metabolism ; physiopathology ; Neurons ; drug effects ; metabolism ; pathology ; Rats ; Rats, Sprague-Dawley ; Siderophores ; pharmacology ; therapeutic use ; Time Factors ; Treatment Outcome ; Up-Regulation ; drug effects ; physiology