1.Cryo-EM structures for the Mycobacterium tuberculosis iron-loaded siderophore transporter IrtAB.
Shan SUN ; Yan GAO ; Xiaolin YANG ; Xiuna YANG ; Tianyu HU ; Jingxi LIANG ; Zhiqi XIONG ; Yuting RAN ; Pengxuan REN ; Fang BAI ; Luke W GUDDAT ; Haitao YANG ; Zihe RAO ; Bing ZHANG
Protein & Cell 2023;14(6):448-458
The adenosine 5'-triphosphate (ATP)-binding cassette (ABC) transporter, IrtAB, plays a vital role in the replication and viability of Mycobacterium tuberculosis (Mtb), where its function is to import iron-loaded siderophores. Unusually, it adopts the canonical type IV exporter fold. Herein, we report the structure of unliganded Mtb IrtAB and its structure in complex with ATP, ADP, or ATP analogue (AMP-PNP) at resolutions ranging from 2.8 to 3.5 Å. The structure of IrtAB bound ATP-Mg2+ shows a "head-to-tail" dimer of nucleotide-binding domains (NBDs), a closed amphipathic cavity within the transmembrane domains (TMDs), and a metal ion liganded to three histidine residues of IrtA in the cavity. Cryo-electron microscopy (Cryo-EM) structures and ATP hydrolysis assays show that the NBD of IrtA has a higher affinity for nucleotides and increased ATPase activity compared with IrtB. Moreover, the metal ion located in the TM region of IrtA is critical for the stabilization of the conformation of IrtAB during the transport cycle. This study provides a structural basis to explain the ATP-driven conformational changes that occur in IrtAB.
Siderophores/metabolism*
;
Iron/metabolism*
;
Mycobacterium tuberculosis/metabolism*
;
Cryoelectron Microscopy
;
Adenosine Triphosphate/metabolism*
;
ATP-Binding Cassette Transporters
2.A zero-sum game or an interactive frame? Iron competition between bacteria and humans in infection war.
Zhenchao WU ; Jiqi SHAO ; Jiajia ZHENG ; Beibei LIU ; Zhiyuan LI ; Ning SHEN
Chinese Medical Journal 2022;135(16):1917-1926
Iron is an essential trace element for both humans and bacteria. It plays a vital role in life, such as in redox reactions and electron transport. Strict regulatory mechanisms are necessary to maintain iron homeostasis because both excess and insufficient iron are harmful to life. Competition for iron is a war between humans and bacteria. To grow, reproduce, colonize, and successfully cause infection, pathogens have evolved various mechanisms for iron uptake from humans, principally Fe 3+ -siderophore and Fe 2+ -heme transport systems. Humans have many innate immune mechanisms that regulate the distribution of iron and inhibit bacterial iron uptake to help resist bacterial invasion and colonization. Meanwhile, researchers have invented detection test strips and coupled antibiotics with siderophores to create tools that take advantage of this battle for iron, to help eliminate pathogens. In this review, we summarize bacterial and human iron metabolism, competition for iron between humans and bacteria, siderophore sensors, antibiotics coupled with siderophores, and related phenomena. We also discuss how competition for iron can be used for diagnosis and treatment of infection in the future.
Humans
;
Siderophores/metabolism*
;
Iron/metabolism*
;
Bacteria
;
Anti-Bacterial Agents/pharmacology*
;
Biological Transport
3.Patterns of Iron Utilization According to the Growth of Staphylococcus aureus.
Yong LIM ; Sung Heui SIN ; Nam Woong YANG ; Seung Il LEE ; Jae Su KIM ; Sae Heuk JOO ; Jong Hoon PARK
Journal of the Korean Society for Microbiology 1998;33(5):435-439
To elucidate iron utilization patterns of Staphylococcus aureus according to the growth, we checked the residual iron concentration and the production of siderophores at the indicated times while culturing S. aureus ATCC 6538 and 25923 strains in brain heart infusion broth. By using streptonigrin susceptibility test and investigating growth curves in three culture media of which iron concentration is 0.2, 20, 45 uM, respectively, we found out that iron metabolism of 6538 strain was more active than that of 25923 strain. In point of tendency of iron consumption, 6538 strain steeply consumed iron just before the onset of stationary phase, but 25923 strain did gradually iron throughout the growth phase. Nevertheless, total amount of iron consumed by each strain during the growth was almost no difference between the strains. CAS diffusion assay in detecting siderophores showed that siderophore production followed iron consumption. These results suggest that the siderophores play significant role in iron utilization in vitro.
Brain
;
Culture Media
;
Diffusion
;
Heart
;
Iron*
;
Metabolism
;
Siderophores
;
Staphylococcus aureus*
;
Staphylococcus*
;
Streptonigrin
4.Growth and Siderophore Production of Staphylococci in Human Peritoneal Dialysate.
Jong Hoon CHUNG ; Min Ho PARK ; Jin Ho KIM ; Yong LIM ; Sung Heui SHIN
Journal of Korean Medical Science 2003;18(2):158-162
Although activity of iron uptake system (IUS) was thought to play an important role in staphylococcal growth in human peritoneal dialysate (HPD) solution, siderophore production, one of the well-known IUS, was not yet detected directly in HPD solution. Therefore, we tried to detect siderophore production directly in HPD solution by using a newly developed chrome azurol S (CAS) agar diffusion assay and to investigate the effect of IUS activity on bacterial growth in HPD solution. According to the susceptibility test for streptonigrin and the productivity of siderophore in the iron-deficient (ID) medium, Staphylococcus aureus ATCC 6538 strain and Staphylococcus epidermidis clinical isolate had higher IUS activity and grew better than S. aureus ATCC 25923 strain in the ID medium. These bacteria did not grow and produce siderophore in the unused chronic ambulatory peritoneal dialysis solution. However, these bacteria grew and produced siderophore in the HPD solution. Moreover, S. aureus ATCC 25923 strain with lower activity of IUS grew poorly and produced smaller amount of siderophore in HPD compared to S. aureus ATCC 6538 strain and S. epidermidis clinical isolate with higher activity of IUS like in the ID medium. To the best of our knowledge, this is the first report that sidero-phore production is directly detected in the HPD by CAS agar diffusion assay. These results indicated that activity of IUS plays an important role in bacterial growth in the HPD solution and pathogenesis of continuous ambulatory peritoneal dialysis peritonitis.
Biological Assay
;
Dialysis Solutions/chemistry*
;
Drug Contamination
;
Human
;
Peritoneal Dialysis, Continuous Ambulatory/adverse effects*
;
Siderophores/metabolism*
;
Staphylococcus/metabolism*
5.Cloning, expression and functional analysis of the dhbC gene from the siderophore producing bacterium Bacillus subtilis CAS15.
Xianmei YU ; Lin CHAO ; Fucong ZHENG ; Chunping HE ; Xiuguo ZHANG
Chinese Journal of Biotechnology 2009;25(6):819-825
We amplified dhbC gene from the siderophore producing bacterium CAS15 by PCR. After ligated the PCR product to pMD18-T vector and then sequenced, we obtained a 1197 bp fragment. The blast result showed that the nucleotide acids of dhbC gene (Accession No. FJ194456) of CAS15 shared 99.7% identity with that of dhbC gene of Bacillus subtilis (GenBank Accession No. Z99120), and was predicted to encode a 43.8 kD polypeptide with 398 amino acid residues. We cloned the dhbC gene into expression vector pET-30a(+) and then transformed into Escherichia coli BL21(DE3) via calcium chloride transformation method, and obtained the recombinant E. coli BL21(DE3)/pET-30a-dhbC. Induced by 1 mmol/L IPTG the fusion protein 6His-DhbC, a 48.8 kD polypeptide was successfully expressed mainly in soluble form in E. coli BL21(DE3), and the amount reached highest at 30 degrees C for 4 h. According to the N-terminal fusion 6 His-tag, we purified the recombinant polypeptide by Ni2+ metal affinity chromatography and finally identified it by Western blotting. The result indicated that the recombinant DhbC had the antigenicity to rabbit anti-his-tag polyclonal antibody, which provides the basis for the study of practical utilization in production and the biocontrol mechanism of B. subtilis. Finally, we deleted dhbC gene by gene knockout and then retransformed it into the dhbC gene-delected mutant, which confirmed that dhbC gene play an important role in siderophore biosynthesis.
Bacillus subtilis
;
enzymology
;
genetics
;
Bacterial Proteins
;
genetics
;
metabolism
;
Cloning, Molecular
;
Escherichia coli
;
genetics
;
metabolism
;
Hydrolases
;
genetics
;
metabolism
;
Hydroxybenzoates
;
metabolism
;
Recombinant Proteins
;
genetics
;
immunology
;
metabolism
;
Siderophores
;
metabolism
6.Identification of a novel strain, Streptomyces blastmyceticus JZB130180, and evaluation of its biocontrol efficacy against Monilinia fructicola.
Mi NI ; Qiong WU ; Hong-Li WANG ; Wei-Cheng LIU ; Bin HU ; Dian-Peng ZHANG ; Juan ZHAO ; De-Wen LIU ; Cai-Ge LU
Journal of Zhejiang University. Science. B 2019;20(1):84-94
Peach brown rot, caused by Monilinia fructicola, is one of the most serious peach diseases. A strain belonging to the Actinomycetales, named Streptomyces blastmyceticus JZB130180, was found to have a strong inhibitory effect on M. fructicola in confrontation culture. Following the inoculation of peaches in vitro, it was revealed that the fermentation broth of S. blastmyceticus JZB130180 had a significant inhibitory effect on disease development by M. fructicola. The fermentation broth of S. blastmyceticus JZB130180 had an EC50 (concentration for 50% of maximal effect) of 38.3 µg/mL against M. fructicola, as determined in an indoor toxicity test. Analysis of the physicochemical properties of the fermentation broth revealed that it was tolerant of acid and alkaline conditions, temperature, and ultraviolet radiation. In addition, chitinase, cellulase, and protease were also found to be secreted by the strain. The results of this study suggest that S. blastmyceticus JZB130180 may be used for the biocontrol of peach brown rot.
Ascomycota/pathogenicity*
;
Bacterial Proteins/metabolism*
;
Cell Wall/metabolism*
;
Cellulase/metabolism*
;
Chitinases/metabolism*
;
Fermentation
;
Fruit/microbiology*
;
Pest Control, Biological/methods*
;
Phylogeny
;
Plant Diseases/prevention & control*
;
Prunus persica/microbiology*
;
Siderophores/metabolism*
;
Streptomyces/physiology*
7.Desferoxamine preconditioning protects against cerebral ischemia in rats by inducing expressions of hypoxia inducible factor 1 alpha and erythropoietin.
Yun-Xia LI ; Su-Ju DING ; Lin XIAO ; Wei GUO ; Qing ZHAN
Neuroscience Bulletin 2008;24(2):89-95
OBJECTIVETo investigate whether desferoxamine (DFO) preconditioning can induce tolerance against cerebral ischemia and its effect on the expression of hypoxia inducible factor 1alpha (HIF-1alpha) and erythropoietin (EPO) in vivo and in vitro.
METHODSRat model of cerebral ischemia was established by middle cerebral artery occlusion with or without DFO administration. Infarct size was examined by TTC staining, and the neurological severity score was evaluated according to published method. Cortical neurons were cultured under ischemia stress which was mimicked by oxygen-glucose deprivation (OGD), and the neuron damage was assessed by MTT assay. Immunofluorescent staining was employed to detect the expressions of HIF-1alpha and EPO.
RESULTSThe protective effect induced by DFO (decreasing the infarction volume and ameliorating the neurological function) appeared at 2 d after administration of DFO (post-DFO), lasted until 7 d and disappeared at 14 d (P < 0.05); the most effective action was observed at 3 d post-DFO. DFO induced tolerance of cultured neurons against OGD: neuronal viability was increased 23%, 34%, 40%, 48% and 56% at 8 h, 12 h, 24 h, 36 h, and 48 h, respectively, post-DFO (P < 0.05). Immunofluorescent staining found that HIF-1alpha and EPO were upregulated in the neurons of rat brain at 3 d and 7 d post-DFO; increase of HIF-1alpha and EPO appeared in cultured cortex neurons at 36 h and 48 h post-DFO.
CONCLUSIONDFO induced tolerance against focal cerebral ischemia in rats, and exerted protective effect on OGD cultured cortical neurons. DFO significant induced the expression of HIF-1alpha and EPO both in vivo and in vitro. DFO preconditioning can protect against cerebral ischemia, which may be associated with the synthesis of HIF-1alpha and EPO.
Animals ; Brain Ischemia ; drug therapy ; metabolism ; physiopathology ; Cells, Cultured ; Cerebral Infarction ; drug therapy ; metabolism ; physiopathology ; Deferoxamine ; pharmacology ; therapeutic use ; Disease Models, Animal ; Erythropoietin ; metabolism ; Fluorescent Antibody Technique ; Hypoxia-Inducible Factor 1, alpha Subunit ; drug effects ; metabolism ; Hypoxia-Ischemia, Brain ; drug therapy ; metabolism ; physiopathology ; Infarction, Middle Cerebral Artery ; drug therapy ; metabolism ; physiopathology ; Iron ; metabolism ; Ischemic Preconditioning ; methods ; Nerve Degeneration ; drug therapy ; metabolism ; physiopathology ; Neurons ; drug effects ; metabolism ; pathology ; Rats ; Rats, Sprague-Dawley ; Siderophores ; pharmacology ; therapeutic use ; Time Factors ; Treatment Outcome ; Up-Regulation ; drug effects ; physiology