1.Rapid Determination of Arsenic in Water by Graphite Furnace Atomic Absorption Spectrometry
Journal of Environment and Health 1993;0(03):-
Objective To establish a method for direct determination of arsenic in water by graphite furnace atomic absorp-tion spectrometry.Methods The contents of arsenic in water samples were directly determined by graphite furnace atomic ab-sorption spectrometry under given conditions of wavelength,ashing and atomization temperature after adding an appropriate amount of nickel sulfate to water samples without enrichment,extraction or transformation of arsenic into hydrogen arsenide of the samples.Results The linear range of the method was0.005-0.200mg /L with a correlation coefficient of0.9996.The re-covery rate,relative standard deviation and detection limit were95.0%-105.0%,4.0%-7.5%and0.005mg /L respectively.Con clu sion Compared with the silver salt method and hydride generation-atomic absorption spectrometry,this method had many advantages such as simplicity of operation,rapidity and suitability for the analysis of batch samples.
2.SARS-CoV-2 vaccination in patients with lymphoid hematologic malignancies
Yawei JIAO ; Shuting CHEN ; Haiping DAI
Journal of Leukemia & Lymphoma 2023;32(4):249-252
Patients with lymphoid hematologic malignancies have a poor prognosis after developing SARS-CoV-2 infection, and their seropositivity rate after SARS-CoV-2 vaccination is lower than that of the healthy population. Since most clinical trials of SARS-CoV-2 vaccines do not include immunodeficient populations, the safety and efficacy of various types of SARS-CoV-2 vaccines for patients with lymphoid hematologic malignancies are unclear. Therefore, physicians should decide whether patients with lymphoid hematologic malignancies receive SARS-CoV-2 vaccination and the timing, type and dose of vaccine after taking into full consideration the patient's immune status, type of treatment and the risk of SARS-CoV-2 infection.
3.Stem cell-like CD8+ T cells: a new pioneer in cancer immunotherapy
XU Shuting ; YANG Chao ; DENG Liufu
Chinese Journal of Cancer Biotherapy 2023;30(10):855-861
[摘 要] CD8+ T细胞是抗肿瘤免疫应答的主要执行者。通过重塑CD8+ T细胞杀伤肿瘤细胞的能力,免疫疗法已在抗肿瘤领域取得重大突破,但临床获益仅局限于部分患者和癌症类型。如何克服CD8+ T细胞功能障碍是肿瘤免疫疗法亟待解决的关键问题。近年来,多项研究揭示了CD8+ T细胞的干性调控机制,发现了干细胞样CD8+ T细胞具有自我更新和增殖能力,阐明了该细胞亚群在维持持续性肿瘤免疫治疗应答中的重要性。本文论述了干细胞样CD8+ T细胞的分子与功能特征、CD8+ T细胞干性的细胞内外影响因素,归纳总结了目前靶向CD8+ T细胞的干性重编程策略,进一步展望了靶向CD8+ T细胞干性程序来提高肿瘤免疫疗法疗效的思路和方法。
4.A novel method for detecting circulating tumor cells immunity based on micro-nano technique.
Shuting LI ; Shufen JIAO ; Yu LI ; Yujuan WU ; Rongyun ZHAI ; Zhe WANG ; Jing CHENG ; Weiying ZHANG ; Yali BEN
Chinese Journal of Biotechnology 2023;39(9):3849-3862
This study was to develop a new method for detecting circulating tumor cells (CTCs) with high sensitivity and specificity, therefore to detect the colorectal cancer as early as possible for improving the detection rate of the disease. To this end, we prepared some micro-column structure microchips modified with graphite oxide-streptavidin (GO-SA) on the surface of microchips, further coupled with a broad-spectrum primary antibody (antibody1, Ab1), anti-epithelial cell adhesion molecule (anti-EpCAM) monoclonal antibody to capture CTCs. Besides, carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) were coupled with colorectal cancer related antibody as specific antibody 2 (Ab2) to prepare complex. The sandwich structure consisting of Ab1-CTCs-Ab2 was constructed by the microchip for capturing CTCs. And the electrochemical workstation was used to detect and verify its high sensitivity and specificity. Results showed that the combination of immunosensor and micro-nano technology has greatly improved the detection sensitivity and specificity of the immunosensor. And we also verified the feasibility of the immunosensor for clinical blood sample detection, and successfully recognitized detection and quantization of CTCs in peripheral blood of colorectal cancer patients by this immunosensor. In conclusion, the super sandwich immunosensor based on micro-nano technology provides a new way for the detection of CTCs, which has potential application value in clinical diagnosis and real-time monitoring of disease.
Humans
;
Nanotubes, Carbon/chemistry*
;
Neoplastic Cells, Circulating/pathology*
;
Biosensing Techniques
;
Immunoassay/methods*
;
Antibodies
;
Colorectal Neoplasms/diagnosis*
;
Electrochemical Techniques/methods*
;
Gold/chemistry*
5.Fgf8P2A-3×GFP/+: A New Genetic Mouse Model for Specifically Labeling and Sorting Cochlear Inner Hair Cells.
Yi PAN ; Shuting LI ; Shunji HE ; Guangqin WANG ; Chao LI ; Zhiyong LIU ; Mingliang XIANG
Neuroscience Bulletin 2023;39(12):1762-1774
The cochlear auditory epithelium contains two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs). Mouse models for labelling juvenile and adult IHCs or OHCs exist; however, labelling for embryonic and perinatal IHCs or OHCs are lacking. Here, we generated a new knock-in Fgf8P2A-3×GFP/+ (Fgf8GFP/+) strain, in which the expression of a series of three GFP fragments is controlled by endogenous Fgf8 cis-regulatory elements. After confirming that GFP expression accurately reflects the expression of Fgf8, we successfully obtained both embryonic and neonatal IHCs with high purity, highlighting the power of Fgf8GFP/+. Furthermore, our fate-mapping analysis revealed, unexpectedly, that IHCs are also derived from inner ear progenitors expressing Insm1, which is currently regarded as an OHC marker. Thus, besides serving as a highly favorable tool for sorting early IHCs, Fgf8GFP/+ will facilitate the isolation of pure early OHCs by excluding IHCs from the entire hair cell pool.
Animals
;
Mice
;
Hair Cells, Auditory, Inner
;
Cochlea/metabolism*
;
Hair Cells, Auditory, Outer/metabolism*
;
Disease Models, Animal
;
Fibroblast Growth Factor 8/metabolism*
6.Integrated analysis of gut microbiome and host immune responses in COVID-19.
Xiaoguang XU ; Wei ZHANG ; Mingquan GUO ; Chenlu XIAO ; Ziyu FU ; Shuting YU ; Lu JIANG ; Shengyue WANG ; Yun LING ; Feng LIU ; Yun TAN ; Saijuan CHEN
Frontiers of Medicine 2022;16(2):263-275
Emerging evidence indicates that the gut microbiome contributes to the host immune response to infectious diseases. Here, to explore the role of the gut microbiome in the host immune responses in COVID-19, we conducted shotgun metagenomic sequencing and immune profiling of 14 severe/critical and 24 mild/moderate COVID-19 cases as well as 31 healthy control samples. We found that the diversity of the gut microbiome was reduced in severe/critical COVID-19 cases compared to mild/moderate ones. We identified the abundance of some gut microbes altered post-SARS-CoV-2 infection and related to disease severity, such as Enterococcus faecium, Coprococcus comes, Roseburia intestinalis, Akkermansia muciniphila, Bacteroides cellulosilyticus and Blautia obeum. We further analyzed the correlation between the abundance of gut microbes and host responses, and obtained a correlation map between clinical features of COVID-19 and 16 severity-related gut microbe, including Coprococcus comes that was positively correlated with CD3+/CD4+/CD8+ lymphocyte counts. In addition, an integrative analysis of gut microbiome and the transcriptome of peripheral blood mononuclear cells (PBMCs) showed that genes related to viral transcription and apoptosis were up-regulated in Coprococcus comes low samples. Moreover, a number of metabolic pathways in gut microbes were also found to be differentially enriched in severe/critical or mild/moderate COVID-19 cases, including the superpathways of polyamine biosynthesis II and sulfur oxidation that were suppressed in severe/critical COVID-19. Together, our study highlighted a potential regulatory role of severity related gut microbes in the immune response of host.
COVID-19
;
Clostridiales
;
Gastrointestinal Microbiome
;
Humans
;
Immunity
;
Leukocytes, Mononuclear
;
SARS-CoV-2
7.Primary assessment of the diversity of Omicron sublineages and the epidemiologic features of autumn/winter 2022 COVID-19 wave in Chinese mainland.
Gang LU ; Yun LING ; Minghao JIANG ; Yun TAN ; Dong WEI ; Lu JIANG ; Shuting YU ; Fangying JIANG ; Shuai WANG ; Yao DAI ; Jinzeng WANG ; Geng WU ; Xinxin ZHANG ; Guoyu MENG ; Shengyue WANG ; Feng LIU ; Xiaohong FAN ; Saijuan CHEN
Frontiers of Medicine 2023;17(4):758-767
With the recent ongoing autumn/winter 2022 COVID-19 wave and the adjustment of public health control measures, there have been widespread SARS-CoV-2 infections in Chinese mainland. Here we have analyzed 369 viral genomes from recently diagnosed COVID-19 patients in Shanghai, identifying a large number of sublineages of the SARS-CoV-2 Omicron family. Phylogenetic analysis, coupled with contact history tracing, revealed simultaneous community transmission of two Omicron sublineages dominating the infections in some areas of China (BA.5.2 mainly in Guangzhou and Shanghai, and BF.7 mainly in Beijing) and two highly infectious sublineages recently imported from abroad (XBB and BQ.1). Publicly available data from August 31 to November 29, 2022 indicated an overall severe/critical case rate of 0.035% nationwide, while analysis of 5706 symptomatic patients treated at the Shanghai Public Health Center between September 1 and December 26, 2022 showed that 20 cases (0.35%) without comorbidities progressed into severe/critical conditions and 153 cases (2.68%) with COVID-19-exacerbated comorbidities progressed into severe/critical conditions. These observations shall alert healthcare providers to place more resources for the treatment of severe/critical cases. Furthermore, mathematical modeling predicts this autumn/winter wave might pass through major cities in China by the end of the year, whereas some middle and western provinces and rural areas would be hit by the upcoming infection wave in mid-to-late January 2023, and the duration and magnitude of upcoming outbreak could be dramatically enhanced by the extensive travels during the Spring Festival (January 21, 2023). Altogether, these preliminary data highlight the needs to allocate resources to early diagnosis and effective treatment of severe cases and the protection of vulnerable population, especially in the rural areas, to ensure the country's smooth exit from the ongoing pandemic and accelerate socio-economic recovery.
8.Host protection against Omicron BA.2.2 sublineages by prior vaccination in spring 2022 COVID-19 outbreak in Shanghai.
Ziyu FU ; Dongguo LIANG ; Wei ZHANG ; Dongling SHI ; Yuhua MA ; Dong WEI ; Junxiang XI ; Sizhe YANG ; Xiaoguang XU ; Di TIAN ; Zhaoqing ZHU ; Mingquan GUO ; Lu JIANG ; Shuting YU ; Shuai WANG ; Fangyin JIANG ; Yun LING ; Shengyue WANG ; Saijuan CHEN ; Feng LIU ; Yun TAN ; Xiaohong FAN
Frontiers of Medicine 2023;17(3):562-575
The Omicron family of SARS-CoV-2 variants are currently driving the COVID-19 pandemic. Here we analyzed the clinical laboratory test results of 9911 Omicron BA.2.2 sublineages-infected symptomatic patients without earlier infection histories during a SARS-CoV-2 outbreak in Shanghai in spring 2022. Compared to an earlier patient cohort infected by SARS-CoV-2 prototype strains in 2020, BA.2.2 infection led to distinct fluctuations of pathophysiological markers in the peripheral blood. In particular, severe/critical cases of COVID-19 post BA.2.2 infection were associated with less pro-inflammatory macrophage activation and stronger interferon alpha response in the bronchoalveolar microenvironment. Importantly, the abnormal biomarkers were significantly subdued in individuals who had been immunized by 2 or 3 doses of SARS-CoV-2 prototype-inactivated vaccines, supporting the estimation of an overall 96.02% of protection rate against severe/critical disease in the 4854 cases in our BA.2.2 patient cohort with traceable vaccination records. Furthermore, even though age was a critical risk factor of the severity of COVID-19 post BA.2.2 infection, vaccination-elicited protection against severe/critical COVID-19 reached 90.15% in patients aged ≽ 60 years old. Together, our study delineates the pathophysiological features of Omicron BA.2.2 sublineages and demonstrates significant protection conferred by prior prototype-based inactivated vaccines.
Humans
;
Aged
;
Middle Aged
;
COVID-19/prevention & control*
;
SARS-CoV-2
;
Pandemics/prevention & control*
;
China/epidemiology*
;
Disease Outbreaks/prevention & control*
;
Vaccination
9.Nanoparticles with rough surface improve the therapeutic effect of photothermal immunotherapy against melanoma.
Jiao XUE ; Yining ZHU ; Shuting BAI ; Chunting HE ; Guangsheng DU ; Yuandong ZHANG ; Yao ZHONG ; Wenfei CHEN ; Hairui WANG ; Xun SUN
Acta Pharmaceutica Sinica B 2022;12(6):2934-2949
Photothermal therapy has been intensively investigated for treating cancer in recent years. However, the long-term therapeutic outcome remains unsatisfying due to the frequently occurred metastasis and recurrence. To address this challenge, immunotherapy has been combined with photothermal therapy to activate anti-tumor immunity and relieve the immunosuppressive microenvironment within tumor sites. Here, we engineered silica-based core‒shell nanoparticles (JQ-1@PSNs-R), in which silica cores were coated with the photothermal agent polydopamine, and a bromodomain-containing protein 4 (BRD4) inhibitor JQ-1 was loaded in the polydopamine layer to combine photothermal and immune therapy for tumor elimination. Importantly, to improve the therapeutic effect, we increased the surface roughness of the nanoparticles by hydrofluoric acid (HF) etching during the fabrication process, and found that the internalization of JQ-1@PSNs-R was significantly improved, leading to a strengthened photothermal killing effect as well as the increased intracellular delivery of JQ-1. In the animal studies, the multifunctional nanoparticles with rough surfaces effectively eradicated melanoma via photothermal therapy, successfully activated tumor-specific immune responses against residual tumor cells, and further prevented tumor metastasis and recurrence. Our results indicated that JQ-1@PSNs-R could serve as an innovative and effective strategy for combined cancer therapy.