1.Heshouwuyin delaying the aging of Leydig cells in rat testis through DNA methyltransferase 1
Tian WU ; Shuo-Ya LU ; Yu-Jiao YANG ; Yu-Lei DUAN ; Qi-Chao AN ; Xiao-Lan ZHEN ; Si-Yun NIU
Acta Anatomica Sinica 2024;55(3):276-284
Objective To investigate whether Heshouwuyin can delay the aging of Leydig cells in rat testis through DNA methyltransferase 1(DNMT1).Methods Totally 40 male Wistar rats were randomly divided into 4 groups,with 10 rats in each group.Immunohistochemistry was used to detect the expression levels of DNMT1 in testis tissue of rats.Testosterone content in serum of rats in each group was detected by ELISA test.A rat Leydig cell aging model was established by free radical oxidative damage.DNMT1 was knocked down by lentivirus in Leydig cells,and the cell senescence status and the testosterone content and testosterone synthesis key enzyme 3β-hydroxysteroid dehydrogenase(3β-HSD),cytochrome P450 family member 11A1(CYP11A1)content secreted by cells were detected by β-galactosidase(β-GAL)staining,immunofluorescenct staining and ELISA.Results Compared with the young control group(YCG),the expression of P16 protein and the positive rate of β-GAL in the testis tissue of rats in the natural aging group(NAG)increased significantly,and the expression of DNMT1 and serum testosterone levels decreased(P<0.05).However,after Heshouwuyin intervention,the expression of P16 protein and the positive rate of β-GAL in the testis of aging rats were reduced,and DNMT1 expression and the serum testosterone levels increased(P<0.05).The same trend was observed in Leydig cells.Knockdown of DNMT1 in Leydig cells,β-GAL positivity and P16 protein expression increased significantly,and testosterone secretion and testosterone synthesis key enzymes 3β-HSD,CYP11A1 content from Leydig cells decreased significantly,compared with the normal control group(NCG)(P<0.05).When Heshouwuyin was added,the above phenomenon was improved.Conclusion Heshouwuyin can delay the aging of rat Leydig cells through DNMT1.
2.Cytotoxicity and underlying mechanism of evodiamine in HepG2 cells.
Ya Dong GAO ; An ZHU ; Lu Di LI ; Tao ZHANG ; Shuo WANG ; Dan Ping SHAN ; Ying Zi LI ; Qi WANG
Journal of Peking University(Health Sciences) 2021;53(6):1107-1114
OBJECTIVE:
To investigate evodiamine (EVO)-induced hepatotoxicity and the underlying mechanism.
METHODS:
HepG2 cells were treated with EVO (0.04-25 μmol/L) for different time intervals, and the cell survival rate was examined by cell counting kit-8 (CCK-8) method. After HepG2 cells were treated with EVO (0.2, 1 and 5 μmol/L) for 48 h, the alanine transaminase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (ALP) activities and total bilirubin (TBIL) content of supernatant were detected. A multifunctional microplate reader was used to detect the intracellular superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in HepG2 cells to evaluate the level of cell lipid peroxidation damage. The interactions between EVO and apoptosis, autophagy or ferroptosis-associated proteins were simulated by molecular docking. The HepG2 cells were stained by mitochondrial membrane potential (MMP) fluorescent probe (JC-10) and annexin V-fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI), and MMP and apoptosis in HepG2 cells were detected by flow cytometry. The protein expression levels of caspase-9, caspase-3, bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2) were detected by Western blot.
RESULTS:
The cell survival rate was significantly reduced after the HepG2 cells were exposed to EVO (0.04-25 μmol/L) in a time- and dose-dependent manner. The half maximal inhibitory concentration (IC50) of the HepG2 cells treated with EVO for 24, 48 and 72 h were 85.3, 6.6 and 4.7 μmol/L, respectively. After exposure to EVO (0.2, 1 and 5 μmol/L) for 48 h, the ALT, AST, LDH, ALP activities and TBIL content in the HepG2 cell culture supernatant, and the MDA content in the cells were increased, and SOD enzyme activity was decreased. Molecular docking results showed that EVO interacted with apoptosis-associated proteins (caspase-9 and caspase-3) better. JC-10 and Annexin V-FITC/PI staining assays demonstrated that EVO could decrease MMP and promote apoptosis in the HepG2 cells. Western blot results indicated that the protein expressions of cleaved caspase-9 and cleaved caspase-3 were upregulated in the HepG2 cell treated with EVO for 48 h. In contrast, the protein expressions of pro-caspase-3, BSEP and MRP2 were downregulated.
CONCLUSION
These results suggested that 0.2, 1 and 5 μmol/L EVO had the potential hepatotoxicity, and the possible mechanism involved lipid peroxidation damage, cell apoptosis, and cholestasis.
ATP Binding Cassette Transporter, Subfamily B, Member 11
;
Apoptosis
;
Caspase 3
;
Caspase 9
;
Cholestasis
;
Hep G2 Cells/drug effects*
;
Humans
;
Lipid Peroxidation
;
Liver/drug effects*
;
Molecular Docking Simulation
;
Multidrug Resistance-Associated Protein 2
;
Quinazolines/toxicity*
3.Systemic-Related Factors of Nonarteritic Anterior Ischemic Optic Neuropathy.
Yue-Yan XIAO ; Wen-Bin WEI ; Ya-Xing WANG ; Ai-Dong LU ; Shuo-Hua CHEN ; Lu SONG ; Shou-Ling WU
Chinese Medical Journal 2018;131(19):2357-2359
4.Inflammatory and Immunomodulatory Effects of Tripterygium wilfordii Multiglycoside in Mouse Models of Psoriasis Keratinocytes.
Shuo ZHANG ; Hong-Jin LI ; Chun-Mei YANG ; Liu LIU ; Xiao-Ying SUN ; Jiao WANG ; Si-Ting CHEN ; Yi LU ; Man-Qi HU ; Ge YAN ; Ya-Qiong ZHOU ; Xiao MIAO ; Xin LI ; Bin LI
Chinese journal of integrative medicine 2024;30(3):222-229
OBJECTIVE:
To determine the role of Tripterygium wilfordii multiglycoside (TGW) in the treatment of psoriatic dermatitis from a cellular immunological perspective.
METHODS:
Mouse models of psoriatic dermatitis were established by imiquimod (IMQ). Twelve male BALB/c mice were assigned to IMQ or IMQ+TGW groups according to a random number table. Histopathological changes in vivo were assessed by hematoxylin and eosin staining. Ratios of immune cells and cytokines in mice, as well as PAM212 cell proliferation in vitro were assessed by flow cytometry. Pro-inflammatory cytokine expression was determined using reverse transcription quantitative polymerase chain reaction.
RESULTS:
TGW significantly ameliorated the severity of IMQ-induced psoriasis-like mouse skin lesions and restrained the activation of CD45+ cells, neutrophils and T lymphocytes (all P<0.01). Moreover, TGW significantly attenuated keratinocytes (KCs) proliferation and downregulated the mRNA levels of inflammatory cytokines including interleukin (IL)-17A, IL-23, tumor necrosis factor α, and chemokine (C-X-C motif) ligand 1 (P<0.01 or P<0.05). Furthermore, it reduced the number of γ δ T17 cells in skin lesion of mice and draining lymph nodes (P<0.01).
CONCLUSIONS
TGW improved psoriasis-like inflammation by inhibiting KCs proliferation, as well as the associated immune cells and cytokine expression. It inhibited IL-17 secretion from γ δ T cells, which improved the immune-inflammatory microenvironment of psoriasis.
Male
;
Animals
;
Mice
;
Tripterygium
;
Psoriasis/drug therapy*
;
Keratinocytes
;
Skin Diseases/metabolism*
;
Cytokines/metabolism*
;
Imiquimod/metabolism*
;
Dermatitis/pathology*
;
Disease Models, Animal
;
Mice, Inbred BALB C
;
Skin/metabolism*