1.Expression of hsa-miR-422a in hypertrophic scars: a bioinformatics analysis
Zewei ZHANG ; Shuchen GU ; Xin HUANG ; Yixuan ZHAO ; Yunhan LIU ; Yimin KHOONG ; Shenying LUO ; Guangshuai LI ; Tao ZAN
Chinese Journal of Medical Aesthetics and Cosmetology 2023;29(1):1-6
Objective:To evaluate the expression level of hsa-miR-422a in hypertrophic scars and to identify the target genes of hsa-miR-422a along with their biological functions using bioinformatics approaches.Methods:From June 2020 to December 2020, tissue samples of 3 hypertrophic scar and 3 normal skin were collected from patients (3 males, 3 females, aged 20-42 years) in Department of Plastic and Reconstructive Surgery, Shanghai Ninth People′s Hospital, Shanghai Jiaotong University School of Medicine. Primary fibroblasts were isolated and cultured. Real-time quantitative PCR was performed to quantify the expression of hsa-miR-422a. To construct a ceRNA network, starbase and Target Scandata bases were utilized to predict genes as well as long noncoding RNAs (lncRNAs) that may sponge hsa-miR-422a. GO and KEGG pathway enrichment analyses were conducted on the target genes of hsa-miR-422a; protein-protein interaction (PPI) networks were constructed to identify the hub genes whose functions were predicted by functional enrichment analyses. The expression of hub genes was validated through real-time quantitative PCR in hypertrophic scars.Results:The expression of hsa-miR-422a was significantly lower in the hypertrophic scar tissue samples and fibroblasts compared to that in the normal skin ( P<0.05). 133 target genes as well as 1033 lncRNAs were predicted by starBase and TargetScandata bases and used to construct an hsa-miR-422a-centered ceRNA network. PPI networks of the target genes revealed 10 hub genes, including MAPK1, GRB2, and IGF1R, which were discovered to be related to protein serine/threonine/tyrosine kinase activity, ubiquitin protein ligase binding, fibroblast growth factor receptor signaling pathway, muscle cell proliferation, and many others; besides, they may be involved in FoxO, mTOR, Toll-like receptor, Ras, MAPK, PI3K-Akt signaling pathways and signaling pathways regulating pluripotency of stem cells. Three hub genes (MAPK1, GRB2, and IGF1R) were significantly upregulated in hypertrophic scars ( P<0.05). Conclusions:hsa-miR-422a is significantly downregulated in the hypertrophic scars and may target hub genes such as MAPK1 in ceRNA networks, ultimately modulating hypertrophic scar formation.
2.Consensus for the management of severe acute respiratory syndrome.
Nanshang ZHONG ; Yanqing DING ; Yuanli MAO ; Qian WANG ; Guangfa WANG ; Dewen WANG ; Yulong CONG ; Qun LI ; Youning LIU ; Li RUAN ; Baoyuan CHEN ; Xiangke DU ; Yonghong YANG ; Zheng ZHANG ; Xuezhe ZHANG ; Jiangtao LIN ; Jie ZHENG ; Qingyu ZHU ; Daxin NI ; Xiuming XI ; Guang ZENG ; Daqing MA ; Chen WANG ; Wei WANG ; Beining WANG ; Jianwei WANG ; Dawei LIU ; Xingwang LI ; Xiaoqing LIU ; Jie CHEN ; Rongchang CHEN ; Fuyuan MIN ; Peiying YANG ; Yuanchun ZHANG ; Huiming LUO ; Zhenwei LANG ; Yonghua HU ; Anping NI ; Wuchun CAO ; Jie LEI ; Shuchen WANG ; Yuguang WANG ; Xioalin TONG ; Weisheng LIU ; Min ZHU ; Yunling ZHANG ; Zhongde ZHANG ; Xiaomei ZHANG ; Xuihui LI ; Wei CHEN ; Xuihua XHEN ; Lin LIN ; Yunjian LUO ; Jiaxi ZHONG ; Weilang WENG ; Shengquan PENG ; Zhiheng PAN ; Yongyan WANG ; Rongbing WANG ; Junling ZUO ; Baoyan LIU ; Ning ZHANG ; Junping ZHANG ; Binghou ZHANG ; Zengying ZHANG ; Weidong WANG ; Lixin CHEN ; Pingan ZHOU ; Yi LUO ; Liangduo JIANG ; Enxiang CHAO ; Liping GUO ; Xuechun TAN ; Junhui PAN ; null ; null
Chinese Medical Journal 2003;116(11):1603-1635
3.Regulation of aerobic glycolysis to decelerate tumor proliferation by small molecule inhibitors targeting glucose transporters.
Meng GAO ; Jian HUANG ; Xin JIANG ; Yafei YUAN ; Huanhuan PANG ; Shuchen LUO ; Nan WANG ; Chengbo YAO ; Zuwan LIN ; Debing PU ; Shuo ZHANG ; Pengcheng SUN ; Zhuoyi LIU ; Yu XIAO ; Qian WANG ; Zeping HU ; Hang YIN
Protein & Cell 2020;11(6):446-451
4. Clinical effect and safety of pegylated interferon-α-2b injection (Y shape, 40 kD) in treatment of HBeAg-positive chronic hepatitis B patients
Fengqin HOU ; Yalin YIN ; Lingying ZENG ; Jia SHANG ; Guozhong GONG ; Chen PAN ; Mingxiang ZHANG ; Chibiao YIN ; Qing XIE ; Yanzhong PENG ; Shijun CHEN ; Qing MAO ; Yongping CHEN ; Qianguo MAO ; Dazhi ZHANG ; Tao HAN ; Maorong WANG ; Wei ZHAO ; Jiajun LIU ; Ying HAN ; Longfeng ZHAO ; Guanghan LUO ; Jiming ZHANG ; Jie PENG ; Deming TAN ; Zhiwei LI ; Hong TANG ; Hao WANG ; Yuexin ZHANG ; Jun LI ; Lunli ZHANG ; Liang CHEN ; Jidong JIA ; Chengwei CHEN ; Zhen ZHEN ; Baosen LI ; Junqi NIU ; Qinghua MENG ; Hong YUAN ; Yongtao SUN ; Shuchen LI ; Jifang SHENG ; Jun CHENG ; Li SUN ; Guiqiang WANG
Chinese Journal of Hepatology 2017;25(8):589-596
Objective:
To investigate the clinical effect and safety of long-acting pegylated interferon-α-2b (Peg-IFN-α-2b) (Y shape, 40 kD) injection (180 μg/week) in the treatment of HBeAg-positive chronic hepatitis B (CHB) patients, with standard-dose Peg-IFN-α-2a as positive control.
Methods:
This study was a multicenter, randomized, open-label, and positive-controlled phase III clinical trial. Eligible HBeAg-positive CHB patients were screened out and randomized to Peg-IFN-α-2b (Y shape, 40 kD) trial group and Peg-IFN-α-2a control group at a ratio of 2:1. The course of treatment was 48 weeks and the patients were followed up for 24 weeks after drug withdrawal. Plasma samples were collected at screening, baseline, and 12, 24, 36, 48, 60, and 72 weeks for centralized detection. COBAS® Ampliprep/COBAS® TaqMan® HBV Test was used to measure HBV DNA level by quantitative real-time PCR. Electrochemiluminescence immunoassay with Elecsys kit was used to measure HBV markers (HBsAg, anti-HBs, HBeAg, anti-HBe). Adverse events were recorded in detail. The primary outcome measure was HBeAg seroconversion rate after the 24-week follow-up, and non-inferiority was also tested. The difference in HBeAg seroconversion rate after treatment between the trial group and the control group and two-sided confidence interval (