1.Design and Implementation of Performance Management Information System of Traditional Chinese Medicine Project
Shuang-Gui TIAN ; Shao-Wu SHEN
Journal of Medical Informatics 2018;39(1):33-36,59
The paper introduces the rebuilding target of the performance management information system for Traditional Chinese Medicine (TCM) project.By expounding on system architecture,function realization,security design and its application of virtual private channel and electronic signature technology based on secure socket layer,it points out that the system helps promote the informatization building of performance management for TCM project.
2.Discussion on the Remote Medical Service Mode Based on Medical Alliance
Qi LIU ; Yong XIAO ; Shuang-Gui TIAN
Journal of Medical Informatics 2018;39(2):18-21
The paper analyzes the remote consultation medical service mode based on medical alliance with SWOT analysis method from the aspects like advantages,disadvantages,opportunities and threats,and expounds on its organizing structure and specific service mode to integrate remote medical service into medical alliance better,which will contribute to the medical career.
3.Genotype and gene charactrization of wild-type measles viruses circulated in Jilin Province.
Chao CHEN ; Song-tao XU ; Jian-hui ZHOU ; Yi-xin JI ; Xiang HOU ; Gui-yan LIU ; Shuang WANG ; Xin CHANG ; Xin TIAN ; Da-qiang LI ; Ying LIU ; Wen-bo XU
Chinese Journal of Experimental and Clinical Virology 2008;22(6):409-412
OBJECTIVETo study the genotype and gene characterization of measles wild viruses circulated in Jilin provinces, and to provide scientific evidences for setting down controlling and preventing strategy and measures.
METHODS38 strains of measles virus isolated in 2001-2006 were genotyped by RT-PCR-RFLP, some strains of measles virus in Jilin province were chosen for the phylogenetic analysis and for the homology analysis of nucleotide and amino acid sequences.
RESULTSAll the 38 strains of measles virus were identified as H1 genotype by RT-PCR-RFLP, and 29 strains of them were identified further as H1 a by sequence analysis. The homology of nucleotide was 88.0%-89.4% and the homology of amino acid was 91.8%-92.7% .The average diversity was less than 1.4%.
CONCLUSIONThe measles virus of H1a genotype was the circulating virus within recent years in Jilin province. There were the same measles virus strains circulating and transmitting at different years and also the different H1a measles virus strains co-circulating at the same year. There were the same transmission chain caused by the same measles virus with other provinces.
China ; epidemiology ; Genotype ; Humans ; Measles ; epidemiology ; prevention & control ; virology ; Measles virus ; classification ; genetics ; isolation & purification ; Molecular Epidemiology ; Phylogeny ; Reverse Transcriptase Polymerase Chain Reaction ; methods
4.A survey on serological epidemiology of influenza A (H1N1) 2009 in Beijing
Peng YANG ; Fang HUANG ; Wei-Xian SHI ; Gui-Lan LU ; Li-Li TIAN ; Shu-Juan GUI ; Xin ZHANG ; Shuang LI ; Bai-Wei LIU ; Ying DENG ; Xing-Huo PANG ; Quan-Yi WANG
Chinese Journal of Epidemiology 2010;31(5):485-488
Objective To investigate the immunological level against influenza A (H1N1)2009 in Beijing and provide evidence to evaluate the developing trend of the disease. Methods Between Nov. 27,2009 and Dec. 23,2009, subjects were randomly selected from patients in hospitals (infectious and respiratory diseases related departments were excluded) ,volunteers in blood donation center and healthy subjects attending the physical examination center. Questionnaire survey was conducted and serum samples were collected to detect the hemagglutination-inhibition (HI) antibody against influenza A(H1N1) 2009 virus. Results 856 subjects participated in this survey, and 127 showed positive HI antibody to this pandemic virus. The proportions of sero-positivity among 0-5 ,was no significant difference in the sero-positivity between males and females (P=0.693). The analysis, factors as age, acute respiratory symptoms and the rate of pandemic (H1N1) 2009 vaccination were significantly associated with sero-positivity of HI antibody to the influenza A (H1N1) 2009 virus. Conclusion Above 15% of the population in Beijing showed protective antibody against influenza A (H1N1) 2009 virus, indicating the development of immunological barrier to this disease had been formed, to some extent.
5.Annual review of Chinese Journal of Traumatology 2020.
Gui-E LIU ; Yuan TIAN ; Wen-Jun ZHAO ; Shuang-Ming SONG ; Lei LI
Chinese Journal of Traumatology 2021;24(1):1-4
The year 2020 is an extremely unusual year. The world lost more than one million lives due to the attack of COVID-19. Economic production has been greatly reduced, and daily activities are largely restricted. Luckily the work of Chinese Journal of Traumatology (CJTEE) has not been adversely affected. 2020 is a harvest year for the journal, which (1) was included in the high-quality academic journals by China Association for Science and Technology; (2) cover of each issue is newly designed; (3) submission increased by about 60% with more countries and regions covered; (4) usage in the ScienceDirect database exceeded a million; (5) the CiteScore rises to more than 2.0 the first time. This study reviewed the articles published in the year 2020 by CJTEE.
COVID-19
;
China
;
Humans
;
Periodicals as Topic
;
Science/organization & administration*
;
Societies, Scientific/organization & administration*
;
Technology/organization & administration*
;
Time Factors
;
Traumatology/organization & administration*
;
Wounds and Injuries/etiology*
6.From H1N1 to 2019-nCoV, what do we learn?
Gui-E LIU ; Yuan TIAN ; Wen-Jun ZHAO ; Shuang-Ming SONG ; Lei LI
Chinese Journal of Traumatology 2020;23(4):187-189
The COVID-19 pandemic is still raging across the world. Everyday thousands of infected people lost their lives. What is worse, there is no specific medicine and we do not know when the end of the pandemic will come. The nearest global pandemic is the 1918 influenza, which caused about 50 million deaths and partly terminate the World War Ⅰ. We believe that no matter the virus H1N1 for the 1918 influenza or 2019-nCoV for COVID-19, they are essentially the same and the final cause of death is sepsis. The definition and diagnostic/management criteria of sepsis have been modified several times but the mortality rate has not been improved until date. Over decades, researchers focus either on the immunosuppression or on the excessive inflammatory response following trauma or body exposure to harmful stimuli. But the immune response is very complex with various regulating factors involved in, such as neurotransmitter, endocrine hormone, etc. Sepsis is not a kind of disease, instead a misbalance of the body following infection, trauma or other harmful stimulation. Therefore we should re-think sepsis comprehensively with the concept of systemic biology, i.e. inflammationomics.
Betacoronavirus
;
Coronavirus Infections
;
complications
;
epidemiology
;
immunology
;
Humans
;
Immune Tolerance
;
Inflammation
;
complications
;
Influenza A Virus, H1N1 Subtype
;
Influenza, Human
;
complications
;
epidemiology
;
immunology
;
Pandemics
;
Pneumonia, Viral
;
complications
;
epidemiology
;
immunology
;
Sepsis
;
etiology
7.What's new in trauma 2020.
Wen-Jun ZHAO ; Gui-E LIU ; Yuan TIAN ; Shuang-Ming SONG ; Lei LI
Chinese Journal of Traumatology 2021;24(2):63-68
Throughout the past 2020, the pandemic COVID-19 has caused a big global shock, meanwhile it brought a great impact on the public health network. Trauma emergency system faced a giant challenge and how to manage trauma under the pandemic of COVID-19 was widely discussed. However, the trauma treatment of special population (geriatric patients and patients taking anticoagulant drugs) has received inadequate attention. Due to the high mortality following severe traumatic hemorrhage, hemostasis and trauma-induced coagulopathy are the important concerns in trauma treatment. Sepsis is another topic should not be ignored when we talking about trauma. COVID-19 itself is a special kind of sepsis, and it may even be called as serious systemic infection syndrome. Sepsis has been become a serious problem waiting to be solved urgently no matter in the fields of trauma, or in intensive care and infection, etc. This article reviewed the research progress in areas including trauma emergency care, trauma bleeding and coagulation, geriatric trauma and basic research of trauma within 2020.
COVID-19
;
Community Networks
;
Disseminated Intravascular Coagulation/therapy*
;
Emergency Medical Services
;
Female
;
Health Services for the Aged
;
Hemorrhage/therapy*
;
Hemostasis
;
Humans
;
Male
;
Pandemics
;
Public Health
;
Sepsis/therapy*
;
Time Factors
;
Trauma Centers
;
Wounds and Injuries/therapy*
8.LncRNA DRAIC regulates the proliferation, apoptosis, migration and invasion of lung adenocarcinoma cells by targeting let-7i-5p.
Bao Lin LIU ; Yi Shuang CUI ; Ya Ping TIAN ; Ying Ze ZHU ; Zi Qian HONG ; Xue Mei ZHANG ; Guo Gui SUN
Chinese Journal of Oncology 2023;45(6):471-481
Objective: To investigate the effects of lncRNA DRAIC on proliferation, apoptosis, migration and invasion of lung adenocarcinoma cells and its mechanism. Methods: Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expression of DRAIC in lung cancer tissues and corresponding adjacent normal tissues of 40 patients with lung adenocarcinoma who underwent surgery in Tangshan People's Hospital from 2019 to 2020. Lung adenocarcinoma cells A549 and H1299 were cultured in vitro and divided into si-NC group, si-DRAIC group, miR-NC group, let-7i-5p mimics group, si-DRAIC+ inhibitor-NC group, and si-DRAIC+ let-7i-5p inhibitor group. CCK-8 method and clone formation experiment were used to detect cell proliferation. Flow cytometry was used to detect cell apoptosis. Transwell array was used to detect the cell migration and invasion. Western blot was used to detect the protein expressions of Caspase-3, Caspase-9, Bcl-2 and Bax. The double luciferase reporter gene experiment was used to verify the regulatory relationship between DRAIC and let-7i-5p. Independent sample t test was used for comparison between two groups, one-way ANOVA was used for comparison between multiple groups, and Pearson correlation analysis was used for correlation analysis. Results: Compared with adjacent tissues, the expression level of DRAIC in lung adenocarcinoma tissues increased (P<0.05), but the expression level of let-7i-5p decreased (P<0.05). The expression levels of DRAIC and let-7i-5p in lung adenocarcinoma tissues were negatively correlated (r=-0.737, P<0.05). The absorbance value of A549 and H1299 cells in the si-DRAIC group at 48, 72 and 96 hours were lower than those in the si-NC group (P<0.05), the number of clones formed [(91.00±6.08 vs. 136.67±6.51); (50.67±1.53 vs. 76.67±4.51)], the number of migration [(606.67±31.34 vs. 960.00±33.06); (483.33±45.96 vs. 741.67±29.67)], the number of invasion [(185.00±8.19 vs. 447.33±22.05); (365.00±33.87 vs. 688.00±32.97)] were lower than those in the si-NC group (P<0.05). However, the apoptosis rates of cells [(13.43±2.79)% vs. (4.53±0.42)%; (23.77±1.04)% vs. (6.60±1.42)%] were higher than those in the si-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in si-DRAIC group were higher than those in si-NC group, and the protein expression of Bcl-2 was lower than that in si-NC group (P<0.05). DRAIC is located in the cytoplasm. DRAIC targeted and negatively regulated the expression of let-7i-5p. The absorbance values of A549 and H1299 cells in the let-7i-5p mimics group at 48, 72 and 96 hours were lower than those in the miR-NC group (P<0.05), the number of clones formed [(131.33±14.47 vs. 171.33±6.11); (59.33±4.93 vs. 80.33±7.09)], the number of migration [(137.67±3.06 vs. 579.33±82.03); (425.00±11.14 vs. 669.33±21.13)], the number of invasion [(54.00±4.36 vs. 112.67±11.59); (80.00±4.58 vs. 333.33±16.80)] were lower than those in the miR-NC group (P<0.05). However, the apoptosis rates of cells [(14.57±1.10)% vs. (6.97±1.11)%; (23.97±0.42)% vs. (7.07±1.21)%] were higher than those in the miR-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in let-7i-5p mimics group were higher than those in miR-NC group, and the protein expression of Bcl-2 was lower than that in miR-NC group (P<0.05). The absorbance values of A549 and H1299 cells in the si-DRAIC+ let-7i-5p inhibitor group at 48, 72 and 96 hours were higher than those in the si-DRAIC+ inhibitor-NC group (P<0.05), the number of clones formed [(82.00±5.29 vs. 59.00±5.57); (77.67±4.93 vs. 41.33±7.57)], the number of migration [(774.33±35.81 vs. 455.67±19.04); (569.67±18.72 vs. 433.67±16.77)], the number of invasion [(670.33±17.21 vs. 451.00±17.52); (263.67±3.06 vs. 182.33±11.93)] were higher than those in the si-DRAIC+ inhibitor-NC group (P<0.05). However, the apoptosis rates of cells [(7.73±0.45)% vs. (19.13±1.50)%; (8.00±0.53)% vs. (28.40±0.53)%] were lower than those in the si-NC group (P<0.05). The protein expressions of Caspase-3, Caspase-9 and Bax in si-DRAIC+ let-7i-5p inhibitor group were higher than those in si-DRAIC+ inhibitor-NC group, and the protein expression of Bcl-2 was lower than that in si-DRAIC+ inhibitor-NC group (P<0.05). Conclusion: DRAIC is highly expressed in lung adenocarcinoma, and DRAIC promotes the proliferation, migration and invasion of lung adenocarcinoma cells and inhibits apoptosis by targeting let-7i-5p.
Humans
;
Adenocarcinoma/genetics*
;
Apoptosis/genetics*
;
bcl-2-Associated X Protein/metabolism*
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
Lung/metabolism*
;
MicroRNAs/metabolism*
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
RNA, Long Noncoding/genetics*
10.Dihydromyricetin mediates epithelial mesenchymal transformation and regulates the proliferation and apoptosis of esophageal squamous cell carcinoma cells.
Ya Ping TIAN ; Yi Shuang CUI ; Xuan ZHENG ; Bao Lin LIU ; Yong Pan ZHANG ; Kun Peng WEI ; Zhi ZHANG ; Wan Ning HU ; Xue Mei ZHANG ; Guo Gui SUN
Chinese Journal of Oncology 2022;44(4):326-333
Objective: To study the effects of dihydromyricetin (DMY) on the proliferation, apoptosis and epithelial mesenchymal transition (EMT) of esophageal squamous cell carcinoma (ESCC) cell KYSE150 and KYSE410. Methods: KYSE150 and KYSE410 cells were treated with different concentrations of DMY (0, 25, 50, 100, 150, 200 μmol/L) for 24 hours. The median inhibition concentration (IC50) values of KYSE150 and KYSE410 were detected by cell counting kit-8 (CCK-8) method. Then 0.5‰ dimethyl sulfoxide (DMSO) was used as control group, dihydromyricetin (DMY), dihydromyricetin and transforming growth factor-β1 (DMY+ TGF-β1), transforming growth factor-β1 (TGF-β1) were used as experimental group. Cell proliferation and apoptosis rates were measured by clonal formation and flow cytometry. Transwell invasion and wound healing assay were used to detect cell invasion and migration. The protein expression levels of Caspase-3, Caspase-9, Bcl-2, Bax, Smad2/3, phosphorylation-Smad2/3 (p-Smad2/3) and Vimentin were detected by western blot. Results: The IC50 values of DMY on KYSE410 and KYSE150 cells were 100.51 and 101.27 μmol/L. The clone formation numbers of KYSE150 and KYSE410 in DMY group [(0.53±0.03) and (0.31±0.03)] were lower than those in DMSO group [(1.00±0.10) and (1.00±0.05), P<0.05]. The apoptosis rates of KYSE150 and KYSE410 cells in DMY group [(1.84±0.22)% and (2.80±0.07)%] were higher than those in DMSO group [(1.00±0.18)% and (1.00±0.07)%, P<0.05]. The invasion numbers of KYSE150 and KYSE410 cells in DMY group [(0.42±0.03) and (0.29±0.05)] were lower than those in DMSO group [(1.00±0.08) and (1.00±0.05), P<0.05]. The migration rates of KYSE150 and KYSE410 cells in DMY group [(0.65±0.14)% and (0.40±0.17)%] were lower than those in DMSO group [(1.00±0.10)% and (1.00±0.08)%, P<0.05]. The clone formation numbers of KYSE150 and KYSE410 in TGF-β1 group [(1.01±0.08) and (0.99±0.25)] were higher than those in DMY+ TGF-β1 group [(0.73±0.10) and (0.58±0.05), P<0.05]. The apoptosis rates of KYSE150 and KYSE410 cells in TGF-β1 group [(0.81±0.14)% and (1.18±0.10)%] were lower than those in DMY+ TGF-β1 group [(1.38±0.22)% and (1.85±0.04)%, P<0.05]. The invasion numbers of KYSE150 and KYSE410 cells in TGF-β1 group [(1.19±0.11) and (1.39±0.11)] were higher than those in DMY+ TGF-β1 group [(0.93±0.09) and (0.93±0.05), P<0.05]. The migration rates of KYSE150 and KYSE410 cells in TGF-β1 group [(1.87±0.19)% and (1.32±0.04)%] were higher than those in DMY+ TGF-β1 group [(0.86±0.16)% and (0.77±0.12)%, P<0.05]. The protein expression levels of Bax, Caspase-3 and Caspase-9 in KYSE150 and KYSE410 cells in DMY group were higher than those in DMSO group, while the protein expression level of Bcl-2 was lower than that in DMSO group (P<0.05). The protein expression levels of p-Smad2/3, Smad2/3 and Vimentin in KYSE150 and KYSE410 cells in DMY group were lower than those in DMSO group (P<0.05). The protein expression levels of Bax, Caspase-3 and Caspase-9 in KYSE150 and KYSE410 cells in TGF-β1 group were lower than those in DMY+ TGF-β1 group, and the protein expression level of Bcl-2 was higher than that in DMY+ TGF-β1 group (P<0.05). The protein expression levels of Bax, Caspase-3 and Caspase-9 in KYSE150 and KYSE410 cells in DMY+ TGF-β1 group were lower than those in DMY group, and the protein expression level of Bcl-2 was higher than that in DMY group (P<0.05). The protein expression levels of p-Smad2/3, Smad2/3 and Vimentin in KYSE150 and KYSE410 cells in TGF-β1 group were higher than those in DMY+ TGF-β1 group (P<0.05). Conclusion: DMY can inhibit the proliferation and EMT of ESCC mediated by TGF-β1 and promote cell apoptosis.
Apoptosis
;
Caspase 3/metabolism*
;
Caspase 9/metabolism*
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation
;
Dimethyl Sulfoxide/pharmacology*
;
Epithelial-Mesenchymal Transition
;
Esophageal Neoplasms/metabolism*
;
Esophageal Squamous Cell Carcinoma
;
Flavonols
;
Humans
;
Signal Transduction
;
Transforming Growth Factor beta1/pharmacology*
;
Vimentin/metabolism*
;
bcl-2-Associated X Protein/pharmacology*