1.Cytotoxicity Studies of Light-oxygen-voltage (LOV) Domain Photosensitizers
Shuang XU ; Ben WAN ; Na SHA ; Kai-Hong ZHAO
Progress in Biochemistry and Biophysics 2025;52(2):487-500
ObjectiveAt present, the most commonly used photosensitizers in photodynamic therapy are still chemical photosensitizers, such as porphyrin and methylene blue, in order to specifically target cellular tissues, and thus poison cells, chemical photosensitizers need to use antibody conjugation or a transgenically encoded tag with affinity for the modified photosensitizing ligand, e.g. FlAsH, ReAsh or Halo Tag. Gene-encoded photosensitizers can directly poison cells by targeting specific cell compartments or organelles. However, currently developed gene-encoded photosensitizers have low reactive oxygen species production and low cytotoxicity, so it is necessary to continue to develop and obtain photosensitizers with higher reactive oxygen species production for the treatment of microbial infections and tumors. MethodsIn this study, we developed a photosensitizer LovPSO2 based on the light-oxygen-voltage (LOV) structural domain of phototropin-1B-like from Oryza sativa japonica. LovPSO2 was expressed in E. coli BL21(DE3) and purified to obtain protein samples, the purified protein samples were added 3 µmol/L singlet oxygen probe of SOSG and 5 µmol/L superoxide anion probe of DHE after fixed to A445=0.063±0.003, respectively, then measured every 2 min of singlet oxygen production for 10 min and every 1 min of superoxide anion production for 5 min under blue light irradiation at 445 nm, 70 µmol·m-2·s-1. ResultsThe results showed that LovPSO2 could produce a large amount of singlet oxygen under blue light irradiation at 445 nm, 70 µmol·m-2·s-1, and its singlet oxygen quantum yield was 0.61, but its superoxide anion yield was low, so in order to improve the superoxide anion yield of LovPSO2, a mutant with a relatively high superoxide anion yield was obtained by further development and design on its basis LovPRO2. The stability of proteins is crucial for research in drug development and drug delivery, among others. Temperature and light are the key factors affecting the production of reactive oxygen species (ROS) by photosensitive proteins and their stability, while the temperature in cell culture and mammals in vivo is about 37°C, and the temperature inside tumor cells is about 42-45°C. Therefore, we further analyzed the photostability of miniSOG, SOPP3, LovPSO2, and LovPRO2 and their thermostability at 37℃ and 45℃. The analysis of proteins thermostability showed that LovPSO2 and LovPRO2 had better thermostability at 37℃ and 45℃, respectively. Analysis of the photostability of the proteins showed that LovPRO2 had better photostability. In addition, to further determine the phototoxic effects of photosensitizers, LovPSO2 and LovPRO2 were expressed in E. coli BL21(DE3) and HeLa cells, respectively. The results showed that LovPSO2 and LovPRO2 had better phototoxicity to E. coli BL21(DE3) under blue light irradiation, and the cellular phototoxicity lethality was as high as 90% after 30 min of continuous light irradiation, but the phototoxicity was weaker in HeLa cells. The reason for this result may be that the intracellular environment exacerbated the photobleaching of FMN encapsulated by LovPSO2 and LovPRO2, respectively, which attenuated the damage of reactive oxygen species to animal cellular tissues, limiting its use as a mechanistic tool to study oxidative stress. ConclusionLovPSO2 and LovPRO2 can be used as antibacterial photosensitizers, which have broader application prospects in the food and medical fields.
2.Construction Strategies and Challenges of Vascularized Brain Organoids
Meng-Meng CHEN ; Nan HU ; Shuang-Qing BAO ; Xiao-Hong LI
Progress in Biochemistry and Biophysics 2025;52(7):1757-1770
Brain organoids are three-dimensional (3D) neural cultures that self-organize from pluripotent stem cells (PSCs) cultured in vitro. Compared with traditional two-dimensional (2D) neural cell culture systems, brain organoids demonstrate a significantly enhanced capacity to faithfully replicate key aspects of the human brain, including cellular diversity, 3D tissue architecture, and functional neural network activity. Importantly, they also overcome the inherent limitations of animal models, which often differ from human biology in terms of genetic background and brain structure. Owing to these advantages, brain organoids have emerged as a powerful tool for recapitulating human-specific developmental processes, disease mechanisms, and pharmacological responses, thereby providing an indispensable model for advancing our understanding of human brain development and neurological disorders. Despite their considerable potential, conventional brain organoids face a critical limitation: the absence of a functional vascular system. This deficiency results in inadequate oxygen and nutrient delivery to the core regions of the organoid, ultimately constraining long-term viability and functional maturation. Moreover, the lack of early neurovascular interactions prevents these models from fully recapitulating the human brain microenvironment. In recent years, the introduction of vascularization strategies has significantly enhanced the physiological relevance of brain organoid models. Researchers have successfully developed various vascularized brain organoid models through multiple innovative approaches. Biological methods, for example, involve co-culturing brain organoids with endothelial cells to induce the formation of static vascular networks. Alternatively, co-differentiation strategies direct both mesodermal and ectodermal lineages to generate vascularized tissues, while fusion techniques combine pre-formed vascular organoids with brain organoids. Beyond biological approaches, tissue engineering techniques have played a pivotal role in promoting vascularization. Microfluidic systems enable the creation of dynamic, perfusable vascular networks that mimic blood flow, while 3D printing technologies allow for the precise fabrication of artificial vascular scaffolds tailored to the organoid’s architecture. Additionally, in vivo transplantation strategies facilitate the formation of functional, blood-perfused vascular networks through host-derived vascular infiltration. The incorporation of vascularization has yielded multiple benefits for brain organoid models. It alleviates hypoxia within the organoid core, thereby improving cell survival and supporting long-term culture and maturation. Furthermore, vascularized organoids recapitulate critical features of the neurovascular unit, including the early structural and functional characteristics of the blood-brain barrier. These advancements have established vascularized brain organoids as a highly relevant platform for studying neurovascular disorders, drug screening, and other applications. However, achieving sustained, long-term functional perfusion while preserving vascular structural integrity and promoting vascular maturation remains a major challenge in the field. In this review, we systematically outline the key stages of human neurovascular development and provide a comprehensive analysis of the various strategies employed to construct vascularized brain organoids. We further present a detailed comparative assessment of different vascularization techniques, highlighting their respective strengths and limitations. Additionally, we summarize the principal challenges currently faced in brain organoid vascularization and discuss the specific technical obstacles that persist. Finally, in the outlook section, we elaborate on the promising applications of vascularized brain organoids in disease modeling and drug testing, address the main controversies and unresolved questions in the field, and propose potential directions for future research.
4.The SMILE study: Study of long-term methotrexate and iguratimod combination therapy in early rheumatoid arthritis.
Fang DU ; Qing DAI ; Jialin TENG ; Liangjing LU ; Shuang YE ; Ping YE ; Zhiqian LIN ; Hong DING ; Min DAI ; Chunde BAO
Chinese Medical Journal 2025;138(14):1705-1713
BACKGROUND:
Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic inflammation and joint destruction. Iguratimod (IGU) is a novel conventional synthetic disease-modifying antirheumatic drugs (csDMARD) with good efficacy and safety for the treatment of active RA in China and Japan. However, the long-term effects of IGU on the progression of bone destruction or radiographic progression in patients with active RA remain unknown. We aimed to investigate the efficacy and safety of iguratimod (IGU), a combination of methotrexate (MTX) and IGU, and IGU in patients with active rheumatoid arthritis (RA) who were naïve to MTX.
METHODS:
This multicenter, double-blind, randomized, non-inferiority clinical trial was conducted at 28 centers for over 52 weeks in China. In total, 911 patients were randomized (1:1:1) to receive MTX monotherapy (10-15 mg weekly, n = 293), IGU monotherapy (25 mg twice daily, n = 297), or IGU + MTX (10-15 mg weekly for MTX and 25 mg twice daily for IGU, n = 305) for 52 weeks. The patients' clinical characteristics, Simplified Disease Activity Index (SDAI), Clinical Disease Activity Index (CDAI), disease activity score in 28 joints-C-reactive protein (DAS28-CRP) level, and disease activity score in 28 joints-erythrocyte sedimentation rate (DAS28-ESR) were assessed at baseline. The primary endpoints were the proportion of patients with ≥20% improvement according to the American College of Rheumatology (ACR20) response and changes in the van der Heijde-modified total Sharp score (vdH-mTSS) at week 52.
RESULTS:
The proportions of patients achieving an ACR20 response at week 52 were 77.44%, 77.05 %, and 65.87% for IGU monotherapy, IGU + MTX, and MTX monotherapy, respectively. The non-inferiority of IGU monotherapy to MTX monotherapy was established with the ACR20 (11.57%; 95% confidence interval [CI], 4.35-18.79%; P <0.001) and vdH-mTSS (-0.37; 95% CI, -1.22-0.47; P = 0.022). IGU monotherapy was also superior to MTX monotherapy in terms of ACR20 ( P = 0.002) but not the vdH-mTSS. The superiority of IGU + MTX over MTX monotherapy was confirmed in terms of the ACR20 (11.18%; 95% CI, 3.99-18.37%; P = 0.003), but not in the vdH-mTSS (-0.68; 95% CI, -1.46-0.11; P = 0.091). However, the difference in the incidence rates of adverse events was not statistically significant.
CONCLUSIONS:
IGU monotherapy/IGU + MTX showed a more favorable clinical response than did MTX monotherapy. IGU may have some clinical benefits over MTX in terms of radiographic progression, implying that IGU may be considered as an initial therapeutic option for patients with active RA.
TRIAL REGISTRATION
https://classic.clinicaltrials.gov/ , NCT01548001.
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Antirheumatic Agents/therapeutic use*
;
Arthritis, Rheumatoid/drug therapy*
;
Chromones/adverse effects*
;
Double-Blind Method
;
Drug Therapy, Combination
;
Methotrexate/adverse effects*
;
Treatment Outcome
;
Sulfonamides
5.4'-O-methylbavachalcone improves vascular cognitive impairment by inhibiting neuroinflammation via EPO/Nrf2/HO-1 pathway.
Xin-Yuan ZHANG ; Chen WANG ; Hong-Qing CHEN ; Xiang-Bing ZENG ; Jun-Jie WANG ; Qing-Guang ZHANG ; Jin-Wen XU ; Shuang LING
China Journal of Chinese Materia Medica 2025;50(14):3990-4002
This study aims to explore the effects and mechanisms of 4'-O-methylbavachalcone(MeBavaC), an active compound from Psoraleae Fructus, in regulating white matter neuroinflammation to improve vascular cognitive impairment. Male Sprague-Dawley(SD) rats were randomly divided into four groups: sham group, model group, high-dose MeBavaC group(14 mg·kg~(-1)), and low-dose MeBavaC group(7 mg·kg~(-1)). The rat model of chronic cerebral hypoperfusion(CCH) was established using bilateral common carotid artery occlusion. The Morris water maze test was performed to evaluate the learning and memory abilities of the rats. Luxol fast blue staining, Nissl staining, immunofluorescence, immunohistochemistry, and transmission electron microscopy were utilized to observe the morphology and ultrastructure of the white matter myelin sheaths, axon integrity, the morphology and number of hippocampal neurons, and the loss and activation of glial cells in the white matter. Transcriptome analysis was performed to explore the potential mechanisms of white matter injury induced by CCH. Western blot and quantitative real-time polymerase chain reaction(qRT-PCR) assays were conducted to measure the expression levels of NOD-like receptor protein 3(NLRP3), absent in melanoma 2(AIM2), gasdermin D(GSDMD), cysteinyl aspartate-specific proteinase-1(caspase-1), interleukin-18(IL-18), interleukin-1β(IL-1β), erythropoietin(EPO), nuclear factor erythroid 2-related factor 2(Nrf2), and heme oxygenase-1(HO-1) in the white matter of rats. The results showed that compared with the model group, MeBavaC significantly improved the learning and memory abilities of rats with CCH, improved the damage of white matter myelin sheath, maintained axonal integrity, reduced the loss of hippocampal neurons and oligodendrocytes in the white matter, inhibited the activation of microglia and the proliferation of astrocytes in the white matter, and suppressed the NLRP3/AIM2/caspase-1/GSDMD pathway. The expression levels of inflammatory cytokines IL-1β and IL-18 were significantly reduced, while EPO expression and the expression of Nrf2/HO-1 antioxidant pathway were notably elevated. In conclusion, MeBavaC can alleviate cognitive impairment in rats with CCH and suppress neuroinflammation in cerebral white matter. The mechanism of action may involve activation of EPO activity, promotion of endogenous antioxidant pathways, and inhibition of neuroinflammation in the white matter. This study suggests that MeBavaC exhibits antioxidant and anti-neuroinflammatory effects, showing potential application in improving cognitive dysfunction.
Animals
;
Male
;
Rats, Sprague-Dawley
;
NF-E2-Related Factor 2/immunology*
;
Rats
;
Chalcones/administration & dosage*
;
Cognitive Dysfunction/metabolism*
;
Signal Transduction/drug effects*
;
Neuroinflammatory Diseases/drug therapy*
;
Heme Oxygenase-1/metabolism*
;
Humans
;
Heme Oxygenase (Decyclizing)/genetics*
6.Research progress of antifungal drugs from natural sources
Shao-jie CHU ; Yan ZHENG ; Shuang-shuang SU ; Xue-song WU ; Hong YAN ; Shao-xin CHEN ; Hong-bo WANG
Acta Pharmaceutica Sinica 2025;60(1):48-57
As the number of patients with compromised immune function increases and fungal resistance develops, so does the risk of contracting deadly fungi in humans. Both fungi and humans are eukaryotes, so identifying unique targets for antifungal drug development is difficult. In addition, the existing antifungal drugs are limited by toxicity, drug interaction and drug resistance in practical application, which leads to the increasing incidence and fatal rate of fungal infections. Therefore, it is urgent to develop new antifungal drugs. The semi-synthetic technology using microbial fermentation products from natural sources as lead compounds has become the most used method in structural modification of antifungal drugs due to its advantages of few reaction steps and easy operation. This paper will introduce the current status of natural antifungal drugs in clinical use, as well as the latest progress in the research and development of new semi-synthetic antifungal drugs, and summarize their mechanism of action, structural modifications, advantages and disadvantages, so as to provide reference for the subsequent development of new antifungal drugs.
7.Progress in the detection of latent tuberculosis infection
Shuang ZHANG ; Hong ZHAO ; Meixia YANG
Shanghai Journal of Preventive Medicine 2025;37(1):94-99
ObjectiveTo introduce the three main techniques for tuberculosis screening currently used in China, to systematically evaluate their accuracy in diagnosing latent tuberculosis infection (LTBI), so as to provide scientific basis and recommendations for the formulation of China’s tuberculosis screening strategy. MethodsLiterature on the diagnosis of tuberculosis by tuberculin skin test (TST), interferon-γ release assay (IGRA), and recombinant Mycobacterium tuberculosis fusion protein (EC) skin test from January 1, 2010 to August 22, 2024 was comprehensively retrieved from PubMed, China National Knowledge Infrastructure (CNKI), and Wanfang Database through computerized search. Besides, all the literature was screened in accordance to the inclusion criteria for diagnostic tests, and characteristic information of the literature selected was extracted simultaneously. Meta-analysis was performed using Stata 17.0 software, with a random-effects model used for weighted quantitative synthesis of included literature, calculating pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and their 95% confidence intervals (CI). ResultsA total of 543 relevant articles were retrieved, with 105 ultimately included. Among them, 33 articles reported diagnostic data for TST, with a pooled sensitivity of 0.68 (95%CI: 0.62‒0.73), specificity of 0.67 (95%CI: 0.60‒0.73), positive likelihood ratio of 2.0 (95%CI: 1.7‒2.5), and negative likelihood ratio of 0.48 (95%CI: 0.40‒0.58). Ninety-four articles reported the diagnostic value of IGRAs test, with a pooled sensitivity of 0.88 (95%CI: 0.87‒0.89), specificity of 0.82 (95%CI: 0.79‒0.84), positive likelihood ratio of 4.8 (95%CI: 4.2‒5.6), and negative likelihood ratio of 0.15 (95%CI: 0.13‒0.17). Data on EC skin test was limited, but preliminary analysis showed that it had high sensitivity and specificity. ConclusionIGRA has a significant advantage in diagnosing LTBI, and EC skin test also shows good diagnostic performance, although relevant data is limited. TST remains suitable for large-scale screening due to its cost-effectiveness.
8.Mediating effect of sleep duration between depression symptoms and myopia in middle school students.
Wei DU ; Xu-Xiang YANG ; Ru-Shuang ZENG ; Chun-Yao ZHAO ; Zhi-Peng XIANG ; Yuan-Chun LI ; Jie-Song WANG ; Xiao-Hong SU ; Xiao LU ; Yu LI ; Jing WEN ; Dang HAN ; Qun DU ; Jia HE
Chinese Journal of Contemporary Pediatrics 2025;27(3):359-365
OBJECTIVES:
To explore the mediating role of sleep duration in the relationship between depression symptoms and myopia among middle school students.
METHODS:
This study was a cross-sectional research conducted using a stratified cluster random sampling method. A total of 1 728 middle school students were selected from two junior high schools and two senior high schools in certain urban areas and farms of the Xinjiang Production and Construction Corps. Questionnaire surveys and vision tests were conducted among the students. Spearman analysis was used to analyze the correlation between depression symptoms, sleep duration, and myopia. The Bootstrap method was employed to investigate the mediating effect of sleep duration between depression symptoms and myopia.
RESULTS:
The prevalence of myopia in the overall population was 74.02% (1 279/1 728), with an average sleep duration of (7.6±1.0) hours. The rate of insufficient sleep was 83.62% (1 445/1 728), and the proportion of students exhibiting depression symptoms was 25.29% (437/1 728). Correlation analysis showed significant negative correlations between visual acuity in both eyes and sleep duration with depressive emotions as measured by the Center for Epidemiologic Studies Depression Scale (with correlation coefficients of -0.064, -0.084, and -0.199 respectively; P<0.01), as well as with somatic symptoms and activities (with correlation coefficients of -0.104, -0.124, and -0.233 respectively; P<0.01) and interpersonal relationships (with correlation coefficients of -0.052, -0.059, and -0.071 respectively; P<0.05). The correlation coefficients for left and right eye visual acuity and sleep duration were 0.206 and 0.211 respectively (P<0.001). Sleep duration exhibited a mediating effect between depression symptoms and myopia (indirect effect=0.056, 95%CI: 0.029-0.088), with the mediating effect value for females (indirect effect=0.066, 95%CI: 0.024-0.119) being higher than that for males (indirect effect=0.042, 95%CI: 0.011-0.081).
CONCLUSIONS
Sleep duration serves as a partial mediator between depression symptoms and myopia in middle school students.
Humans
;
Myopia/etiology*
;
Male
;
Female
;
Depression/physiopathology*
;
Cross-Sectional Studies
;
Sleep
;
Adolescent
;
Students
;
Child
;
Time Factors
;
Sleep Duration
9.Clinical and genetic characteristics of osteopetrosis in children.
Min WANG ; Ao-Shuang JIANG ; Cheng-Lin ZHU ; Jie WANG ; Ya-Ping WANG ; Shan GAO ; Yan LI ; Tian-Ping CHEN ; Hong-Jun LIU ; Jian WANG
Chinese Journal of Contemporary Pediatrics 2025;27(5):568-573
OBJECTIVES:
To study the clinical and genetic characteristics of osteopetrosis (OPT) in children.
METHODS:
A retrospective analysis was performed on the clinical data of 14 children with OPT. Whole-exome sequencing was used to detect pathogenic genes, and clinical phenotypes and genotypic features were summarized.
RESULTS:
Among the 14 children (10 males and 4 females), the median age at diagnosis was 8 months. Clinical manifestations included systemic osteosclerosis (14 cases, 100%), anemia (12 cases, 86%), infections (10 cases, 71%), thrombocytopenia (9 cases, 64%), hepatosplenomegaly (8 cases, 57%), and developmental delay (5 cases, 36%). Malignant osteopetrosis (MOP) cases had lower platelet counts, creatine kinase isoenzyme, and serum calcium levels, but higher white blood cell counts, lactate dehydrogenase, and alkaline phosphatase levels compared to non-MOP cases (P<0.05). Genetic testing identified 15 variants in 12 patients, including 8 variants in the CLCN7 gene (53%), 6 in the TCIRG1 gene (40%), and 1 in the TNFRSF11A gene (7%). Three novel CLCN7 variants were identified: c.2351G>C, c.1215-43C>T, and c.1534G>A. All four patients with TCIRG1 variants exhibited MOP clinical phenotypes. Of the seven patients with CLCN7 variants, 4 presented with intermediate OPT, 2 with benign OPT, and 1 with MOP.
CONCLUSIONS
Clinical phenotypes of OPT in children are heterogeneous, predominantly involving CLCN7 and TCIRG1 gene variants, with a correlation between clinical phenotypes and genotypes.
Humans
;
Osteopetrosis/genetics*
;
Male
;
Female
;
Infant
;
Child, Preschool
;
Retrospective Studies
;
Vacuolar Proton-Translocating ATPases/genetics*
;
Child
;
Chloride Channels/genetics*
;
Mutation
;
Receptor Activator of Nuclear Factor-kappa B
10.Molecular Pathogenic Mechanism Study of Two Cases of Inherited Dysfibrinogenemia.
Min WANG ; Tian-Ping CHEN ; Ao-Shuang JIANG ; Cheng-Lin ZHU ; Nan WEI ; Li-Juan ZHU ; Li-Jun QU ; Hong-Jun LIU
Journal of Experimental Hematology 2025;33(1):187-192
OBJECTIVE:
To analyze two families with inherited dysfibrinogenemia, and explore the molecular pathogenic mechanisms.
METHODS:
The coagulation indexes of the probands and their family members were detected. The FGA, FGB, and FGG exons and their flanking sequences were amplified by PCR, and the mutation sites were identified by sequencing. SIFT, PolyPhen2, LRT, ReVe, MutationTaster, phyloP, and phastCons bioinformatics software were used to predict the functional impact of the mutation sites. Protein structure and amino acid conservation analysis of the variant were conducted using PyMOL and Clustal X software.
RESULTS:
The thrombin time (TT) of the proband in family 1 was prolonged to 37.00 s, and Fg∶C decreased to 0.52 g/L. The TT of the proband in family 2 was 20.30 s, and Fg∶C was 1.00 g/L, which was lower than the normal range. Genetic analysis revealed that the proband in family 1 had a heterozygous mutation c.80T>C in FGA, resulting in the substitution of phenylalanine 27 with serine (Phe27Ser). The proband in family 2 had a heterozygous mutation c.1007T>A in FGG, resulting in the substitution of methionine 336 with lysine (Met336Lys). Bioinformatics software prediction analysis indicated that both mutations were deleterious variants. PyMOL mutation models revealed that the Aα chain mutation (Phe27Ser) in family 1 and γ chain mutation (Met336Lys) in family 2 resulted in alterations in spatial structure and reduced protein stability. Clustal X results showed that both Aα Phe27 and γMet336 were highly conserved across homologous species.
CONCLUSION
Heterozygous mutations of FGA gene c.80T>C and FGG gene c.1007T>A are both pathogenic variants, causing inherited dysfibrinogenemia.
Female
;
Humans
;
Male
;
Afibrinogenemia/genetics*
;
Fibrinogen/genetics*
;
Heterozygote
;
Mutation
;
Pedigree

Result Analysis
Print
Save
E-mail