1.Genistein attenuates LPS-induced inflammatory injury of rat dorsal root ganglion neuron via down-regulating HDAC6.
Songlin ZHOU ; Junqing HUANG ; Ke LI ; Shuaigang DU ; Bin YANG ; Zhonghua GUO
Journal of Central South University(Medical Sciences) 2022;47(6):707-716
OBJECTIVES:
Neuropathic pain (NP) is a chronic pain caused by somatosensory neuropathy or disease, and genistein (Gen) might be a potential drug for the treatment of NP. Therefore, this study aims to investigate the effect of Gen on lipopolysaccharide (LPS)-induced inflammatory injury of dorsal root ganglion neuron (DRGn) in rats and the possible molecular mechanism.
METHODS:
The DRGn of 1-day-old juvenile rats were taken for isolation and culture. The DRGn in logarithmic growth phase were divided into a control group, a LPS group, a tubastatin hydrochloride (TSA)+LPS group, a Gen1+LPS group, a Gen2+LPS group, a Gen2+LPS+TSA group, a Gen2+pcDNA-histone deacetylase 6 (HDAC6)+LPS group, and a Gen2+pcDNA3.1+LPS group. The LPS group was treated with 1 μg/mL LPS for 24 h; the TSA+LPS group, the Gen1+LPS group, the Gen2+LPS group were treated with 5 μmol/L TSA, 5 μmol/L Gen, 10 μmol/L Gen respectively for 0.5 h, and then added 1 μg/mL LPS for 24 h; the Gen2+TSA+LPS group was treated with 10 μmol/L Gen and 5 μmol/L TSA for 0.5 h and then added 1 μg/mL LPS for 24 h; the Gen2+pcDNA-HDAC6+LPS group and the Gen2+pcDNA3.1+LPS group received 100 nmol/L pcDNA-HDAC6 and pcDNA3.1 plasmids respectively, and 24 h after transfection, 10 μmol/L Gen was pretreated for 0.5 h, and then added 1 μg/mL LPS for 24 h. Real-time RT-PCR was used to detect the HDAC6 mRNA expression in DRGn; CCK-8 method was used to detect cell viability of DRGn; flow cytometry was used to detect cell apoptosis of DRGn; ELISA was used to detect the levels of IL-1β, IL-6, and TNF-α in DRGn culture supernatant; Western blotting was used to detect the protein expression of HDAC6, Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and NF-κB p65 in DRGn.
RESULTS:
Compared with the control group, the expression levels of HDAC6 mRNA and protein, the expression levels of TLR4 and MyD88 protein in DRGn of LPS group rats were significantly up-regulated, the ratio of p-NF-κB p65/NF-κB p65 was significantly increased, and the activity of DRGn was significantly decreased, the apoptosis rate was significantly increased, and the levels of IL-1β, IL-6 and TNF-α in the DRGn culture supernatant were significantly increased (all P<0.05). Compared with the LPS group, the expression levels of HDAC6 mRNA and protein, TLR4 and MyD88 protein expression levels in DRGn of the TSA+LPS group, the Gen1+LPS group, the Gen2+LPS group and the Gen2+TSA+LPS group were significantly down-regulated, the ratio of p-NF-κB p65/NF-κB p65 was significantly decreased, the activity of DRGn was significantly increased, the apoptosis rate was significantly decreased, and the levels of IL-1β, IL-6 and TNF-α in the DRGn culture supernatant were significantly decreased (all P<0.05), and the above changes were most obvious in the Gen2+TSA+LPS group. Compared with the Gen2+LPS group, the expression levels of HDAC6 mRNA and protein, TLR4 and MyD88 protein expression levels in DRGn of the Gen2+pcDNA-HDAC6+LPS group were significantly up-regulated, the ratio of p-NF-κB p65/NF-κB p65 was significantly increased, the activity of DRGn was significantly decreased, and the apoptosis rate was significantly increased, and the levels of IL-1β, IL-6 and TNF-α in the DRGn culture supernatant were significantly increased (all P<0.05).
CONCLUSIONS
Gen can alleviate LPS-induced DRGn inflammatory injury in rats, which might be related to down-regulating the expression of HDAC6 and further inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway.
Animals
;
Ganglia, Spinal
;
Genistein/pharmacology*
;
Histone Deacetylase 6/metabolism*
;
Interleukin-6/metabolism*
;
Lipopolysaccharides
;
Myeloid Differentiation Factor 88
;
NF-kappa B/metabolism*
;
Neurons/metabolism*
;
RNA, Messenger
;
Rats
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*