1.Phenylpropanoids from roots of Berberis polyantha.
Dong-Mei SHA ; Shuai-Cong NI ; Li-Niu SHA-MA ; Hai-Xiao-Lin-Mo MA ; Xiao-Yong HE ; Bin HE ; Shao-Shan ZHANG ; Ying LI ; Jing WEN ; Yuan LIU ; Xin-Jia YAN
China Journal of Chinese Materia Medica 2025;50(6):1564-1568
The chemical constituents were systematically separated from the roots of Berberis polyantha by various chromatographic methods, including silica gel column chromatography, HP20 column chromatography, polyamide column chromatography, reversed-phase C_(18) column chromatography, and preparative high-performance liquid chromatography. The structures of the compounds were identified by physicochemical properties and spectroscopic techniques(1D NMR, 2D NMR, UV, MS, and CD). Four phenylpropanoids were isolated from the methanol extract of the roots of B. polyantha, and they were identified as(2R)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone-O-β-D-glucopyranoside(1), methyl 4-hydroxy-3,5-dimethoxybenzoate(2),(+)-syringaresinol(3), and syringaresinol-4-O-β-D-glucopyranoside(4). Compound 1 was a new compound, and other compounds were isolated from this plant for the first time. The anti-inflammatory activity of these compounds was evaluated based on the release of nitric oxide(NO) in the culture of lipopolysaccharide(LPS)-induced RAW264.7 macrophages. At a concentration of 10 μmol·L~(-1), all the four compounds inhibited the LPS-induced release of NO in RAW264.7 cells, demonstrating potential anti-inflammatory properties.
Plant Roots/chemistry*
;
Animals
;
Mice
;
Berberis/chemistry*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
Nitric Oxide/metabolism*
;
Molecular Structure
;
Anti-Inflammatory Agents/isolation & purification*
2.Yougui Yin attenuates adipogenic differentiation of bone marrow mesenchymal stem cells by modulating PPARγ pathway to treat glucocorticoid-induced osteonecrosis.
Hong-Zhong XI ; Hao CHEN ; Shuai HE ; Wei SONG ; Jia-Hao FU ; Bin DU ; Xin LIU
China Journal of Chinese Materia Medica 2025;50(12):3356-3367
This study aims to investigate the pharmacological effects and mechanisms of Yougui Yin in treating glucocorticoid-induced osteonecrosis. A rat model of glucocorticoid-associated osteonecrosis of the femoral head(GA-ONFH) was established by intramuscular injection of dexamethasone at 20 mg·kg~(-1) every other day for 8 weeks. Rats were randomly allocated into control, model, and low-and high-dose(1.5 and 3.0 g·kg~(-1), respectively) Yougui Yin groups. After modeling, rats in Yougui Yin groups were administrated with Yougui Yin via gavage, which was followed by femoral specimen collection. Hematoxylin-eosin staining was employed to observe femoral head repair, and immunofluorescence was employed to assess adipogenic differentiation of bone marrow mesenchymal stem cells(BMSCs) within the femoral head. Cell experiments were carried out with dexamethasone(1 μmol·L~(-1))-treated BMSCs to evaluate the effects of Yougui Yin-medicated serum on adipogenic differentiation. Animal experiments demonstrated that compared with the model group, Yougui Yin at both high and low doses significantly improved bone mineral density(BMD), bone volume/total volume(BV/TV) ratio, and trabecular thickness(Tb.Th) in the femoral head. Additionally, Yougui Yin alleviated necrosis-like changes and adipocyte infiltration and significantly reduced the expression level of peroxisome proliferator-activated receptor γ(PPARγ) in the femoral head, thereby suppressing the adipogenic differentiation of BMSCs in GA-ONFH rats. The cell experiments revealed that Yougui Yin-medicated serum markedly inhibited dexamethasone-induced adipogenic differentiation of BMSCs and down-regulated the level of PPARγ. The overexpression of PPARγ attenuated the inhibitory effect of Yougui Yin-medicated serum on the adipogenic differentiation of BMSCs, indicating the critical role of PPARγ in Yougui Yin-mediated suppression of adipogenic differentiation of BMSCs. In conclusion, Yougui Yin exerts therapeutic effects on glucocorticoid-induced osteonecrosis by down-regulating PPARγ expression and inhibiting adipogenic differentiation of BMSCs.
Animals
;
Mesenchymal Stem Cells/metabolism*
;
PPAR gamma/genetics*
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Glucocorticoids/adverse effects*
;
Rats, Sprague-Dawley
;
Adipogenesis/drug effects*
;
Osteonecrosis/genetics*
;
Cell Differentiation/drug effects*
;
Bone Marrow Cells/metabolism*
;
Femur Head Necrosis/chemically induced*
;
Humans
3.Effect and mechanism of Xintong Granules in ameliorating myocardial ischemia-reperfusion injury in rats by regulating gut microbiota.
Yun-Jia WANG ; Ji-Dong ZHOU ; Qiu-Yu SU ; Jing-Chun YAO ; Rui-Qiang SU ; Guo-Fei QIN ; Gui-Min ZHANG ; Hong-Bao LIANG ; Shuai FENG ; Jia-Cheng ZHANG
China Journal of Chinese Materia Medica 2025;50(14):4003-4014
This study investigates the mechanism by which Xintong Granules improve myocardial ischemia-reperfusion injury(MIRI) through the regulation of gut microbiota and their metabolites, specifically short-chain fatty acids(SCFAs). Rats were randomly divided based on body weight into the sham operation group, model group, low-dose Xintong Granules group(1.43 g·kg~(-1)·d~(-1)), medium-dose Xintong Granules group(2.86 g·kg~(-1)·d~(-1)), high-dose Xintong Granules group(5.72 g·kg~(-1)·d~(-1)), and metoprolol group(10 mg·kg~(-1)·d~(-1)). After 14 days of pre-administration, the MIRI rat model was established by ligating the left anterior descending coronary artery. The myocardial infarction area was assessed using the 2,3,5-triphenyltetrazolium chloride(TTC) staining method. Apoptosis in tissue cells was detected by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling(TUNEL) assay. Pathological changes in myocardial cells and colonic tissue were observed using hematoxylin-eosin(HE) staining. The levels of tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), creatine kinase MB isoenzyme(CK-MB), and cardiac troponin T(cTnT) in rat serum were quantitatively measured using enzyme-linked immunosorbent assay(ELISA) kits. The activities of lactate dehydrogenase(LDH), creatine kinase(CK), and superoxide dismutase(SOD) in myocardial tissue, as well as the level of malondialdehyde(MDA), were determined using colorimetric assays. Gut microbiota composition was analyzed by 16S rDNA sequencing, and fecal SCFAs were quantified using gas chromatography-mass spectrometry(GC-MS). The results show that Xintong Granules significantly reduced the myocardial infarction area, suppressed cardiomyocyte apoptosis, and decreased serum levels of pro-inflammatory cytokines(TNF-α, IL-1β, and IL-6), myocardial injury markers(CK-MB, cTnT, LDH, and CK), and oxidative stress marker MDA. Additionally, Xintong Granules significantly improved intestinal inflammation in MIRI rats, regulated gut microbiota composition and diversity, and increased the levels of SCFAs(acetate, propionate, isobutyrate, etc.). In summary, Xintong Granules effectively alleviate MIRI symptoms. This study preliminarily confirms that Xintong Granules exert their inhibitory effects on MIRI by regulating gut microbiota imbalance and increasing SCFA levels.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Rats
;
Male
;
Myocardial Reperfusion Injury/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Apoptosis/drug effects*
;
Humans
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/genetics*
;
Malondialdehyde/metabolism*
4.Diagnosis of coronary artery lesions in children based on Z-score regression model.
Yong WANG ; Jia-Ying JIANG ; Yan DENG ; Bo LI ; Ping SHUAI ; Xiao-Ping HU ; Yin-Yan ZHANG ; Han WU ; Lu-Wei YE ; Qian PENG
Chinese Journal of Contemporary Pediatrics 2025;27(2):176-183
OBJECTIVES:
To construct a Z-score regression model for coronary artery diameter based on echocardiographic data from children in Sichuan Province and to establish a Z-score calculation formula.
METHODS:
A total of 744 healthy children who underwent physical examinations at Sichuan Provincial People's Hospital from January 2020 to December 2022 were selected as the modeling group, while 251 children diagnosed with Kawasaki disease at the same hospital from January 2018 to December 2022 were selected as the validation group. Pearson correlation analysis was conducted to analyze the relationships between coronary artery diameter values and age, height, weight, and body surface area. A regression model was constructed using function transformation to identify the optimal regression model and establish the Z-score calculation formula, which was then validated.
RESULTS:
The Pearson correlation analysis showed that the correlation coefficients for the diameters of the left main coronary artery, left anterior descending artery, left circumflex artery, and right coronary artery with body surface area were 0.815, 0.793, 0.704, and 0.802, respectively (P<0.05). Among the constructed regression models, the power function regression model demonstrated the best performance and was therefore chosen as the optimal model for establishing the Z-score calculation formula. Based on this Z-score calculation formula, the detection rate of coronary artery lesions was found to be 21.5% (54/251), which was higher than the detection rate based on absolute values of coronary artery diameter. Notably, in the left anterior descending and left circumflex arteries, the detection rate of coronary artery lesions using this Z-score calculation formula was higher than that of previous classic Z-score calculation formulas.
CONCLUSIONS
The Z-score calculation formula established based on the power function regression model has a higher detection rate for coronary artery lesions, providing a strong reference for clinicians, particularly in assessing coronary artery lesions in children with Kawasaki disease.
Humans
;
Male
;
Female
;
Child, Preschool
;
Child
;
Coronary Artery Disease/diagnostic imaging*
;
Infant
;
Mucocutaneous Lymph Node Syndrome
;
Regression Analysis
;
Coronary Vessels/diagnostic imaging*
;
Echocardiography
;
Adolescent
5.Association between uric acid-albumin ratio and spontaneous reperfusion in ST-segment elevation myocardial infarction patients.
Jing NAN ; Shuai MENG ; Ruo-Fei JIA ; Wei CHEN ; Xing-Sheng YANG ; Hong-Yu HU ; Ze-Ning JIN
Journal of Geriatric Cardiology 2025;22(2):229-236
BACKGROUND:
The association between uric acid-albumin ratio (UAR) with different diseases has been evaluated before. However, the association between UAR with spontaneous reperfusion (SR) in patients with ST-segment elevation myocardial infarction (STEMI) has not been explored.
METHODS:
STEMI patients admitted to our department and underwent primary coronary angiography between 1st November 2018 and 31st December 2020 were retrospectively enrolled. The patients were divided into the SR group and the non-SR group according to the index coronary angiography results. The association between UAR and SR was evaluated by uni-variable and multi-variable logistic analysis. Receiver operating characteristic curve analysis was used to determine the optimum cut-off level of UAR in predicting SR.
RESULTS:
Three hundred and fifty-seven patients were finally enrolled in our study, 55 patients were divided into the SR group and 302 patients were divided into the non-SR group. In uni-variable analysis, patients with SR were older (P = 0.032), with higher red blood cell distribution width (P < 0.001) and red blood cell distribution width-to-platelet ratio (P < 0.001), higher level of C-reactive protein (P = 0.046), higher level of uric acid (P < 0.001) compared with patients without SR. Patients with SR had a lower level of platelets (P = 0.008), lower level of on-admission B-type natriuretic peptide (P < 0.001). As for the level of UAR, STEMI patients with SR had significantly higher levels of UAR compared with STEMI patients without SR [11.1 (8.9-13.4) vs. 8.3 (6.6-10.0), P < 0.001]. Further multi-variable logistic analysis reveals that UAR was the independent risk factor of SR in different models after adjusting different variables. Receiver operating characteristic analysis showed that UAR had good predictive value in SR (AUC = 0.75, 95% CI: 0.702-0.794, P < 0.01).
CONCLUSIONS
Our study shows that UAR is an independent risk factor for predicting SR in STEMI patients.
6.A novel loop-structure-based bispecific CAR that targets CD19 and CD22 with enhanced therapeutic efficacy against B-cell malignancies.
Lijun ZHAO ; Shuhong LI ; Xiaoyi WEI ; Xuexiu QI ; Qiaoru GUO ; Licai SHI ; Ji-Shuai ZHANG ; Jun LI ; Ze-Lin LIU ; Zhi GUO ; Hongyu ZHANG ; Jia FENG ; Yuanyuan SHI ; Suping ZHANG ; Yu J CAO
Protein & Cell 2025;16(3):227-231
8.Effects of inhibiting KDM2A gene on the proliferation,invasion,and migration of liver cancer cells
Ji-Nan HE ; Hong-Yan KONG ; Dan-Dan XIANG ; Shuai-Wen HUANG ; Qi-Qin SONG ; Rui MIAO ; Jia-Quan HUANG
Medical Journal of Chinese People's Liberation Army 2024;49(7):814-822
Objective To investigate the effects of inhibiting KDM2A gene on the proliferation,invasion and migration of liver cancer cells and its possible regulatory mechanism.Methods Forty pairs of HCC tissues and their adjacent normal counterparts were collected from 2014 to 2017 in Tongji Hospital,Tongji Medical College Affiliated to Huazhong University of Science and Technology.Human liver cancer cell lines HepG2,Huh7,HCCLM3,MHCC-97H and normal liver cells LO2 were cultured in vitro.The mRNA and protein expression levels of KDM2A in HCC tissues and cells were detected by qRT-PCR and Western blotting.Huh7 cells were taken and set up as follows:(1)si-NC group(transfected with si-NC)and si-KDM2A group(transfected with si-KDM2A);(2)mimic-NC group(transfected with mimic-NC),miRNA-29a-3p mimic group(transfected with miRNA-29a-3p mimic),inhibitor-NC group(transfected with inhibitor-NC)and miRNA-29a-3p inhibitor group(transfected with miRNA-29a-3p inhibitor).The mRNA and protein expression levels of KDM2A were detected by qRT-PCR and Western blotting.The invasion and migration of cells were detected by Transwell,the proliferation of cells was detected by CCK-8 methods.The online databases TargetScan,miRDIP,miRWalk,Starbase and miRDB were used to predict the binding sites of KDM2A and miR-29a-3p.The KDM2A 3'-UTR(WT)or KDM2A 3'-UTR(MUT)report plasmid was co-transfected with NC-miRNA or miR-29a-3p mimics respectively for 48 h in 293T cells,and the luciferase activity was detected by the luciferase reporter gene detection system.Results Compared with adjacent normal counterparts,the relative mRNA and protein expression levels of KDM2A in HCC tissues increased significantly(P<0.05).Compared with LO2,the relative mRNA and protein expression levels of KDM2A in HepG2,Huh7,HCCLM3 and MHCC-97H increased significantly(P<0.05).Compared with si-NC group,the proliferation,invasion and migration of Huh7 cells in si-KDM2A group decreased significantly(P<0.05 or P<0.01).The analysis results of TargetScan,miRDIP,miRWalk,Starbase and miRDB showed that there were binding sites between KDM2A and miR-29a-3p.The results of the dual luciferase reporter assay showed that miR-29a-3p mimic significantly reduced KDM2A-MUT luciferase activity(P<0.01).After overexpression of miRNA-29a-3p,the relative mRNA and protein expression levels of KDM2A were decreased(P<0.01),the proliferation,invasion and migration abilities were decreased(P<0.05)in Huh7 cells.After inhibiting the expression of miRNA-29a-3p,the relative mRNA and protein expression levels of KDM2A were increased(P<0.05),the proliferation,invasion and migration abilities were enhanced(P<0.05)in Huh7 cells.Conclusion Inhibiting the expression of KDM2A can reduce the proliferation and migration ability of Huh7 cells.miR-29a-3p may be the upstream regulator of KDM2A and participate in the occurrence and development of hepatocellular carcinoma.
9.Research and Application Progress of Co-reaction Accelerators in Electrochemiluminescence System
Mei-Xing LI ; Jia-Wei SHI ; Shuai-Hui CUI ; Yu-Hang ZHANG ; Qing-Ming SHEN
Chinese Journal of Analytical Chemistry 2024;52(5):634-644
Electrochemiluminescence(ECL)refers to the process of luminescence triggered by high-energy electron transfer between intermediate products during the oxidation-reduction reaction on the electrode surface.In the co-reactants involved ECL process,the presence of co-reaction accelerators can effectively catalyze the decomposition of co-reactants,leading to the generation of abundant free radical intermediates,thereby significantly enhancing the ECL signals.This plays a critical role in constructing simple,sensitive,and efficient ECL sensing platforms.This review focused on the novel co-reaction accelerators developed in recent years.Based on different types of co-reaction accelerator materials,including single atom catalysts,metal-based nanomaterials,polymers and other materials,the ECL reaction process and signal enhancement mechanisms,as well as their relevant applications in constructing ECL sensing platforms,were elucidated.Furthermore,the current research challenges and development prospect of co-reaction accelerators were also discussed.
10.Research progress on the role of resveratrol in wound healing
Yu LIU ; Liping YANG ; Baixue LIU ; Shuai ZHOU ; Meng LI ; Qing JIA ; Xijun YU
Chinese Journal of Burns 2024;40(2):196-200
The difficulty of wound healing in patients is a difficult problem that doctors in all clinical departments may encounter, and there is still no good solution. Resveratrol is a kind of natural active substance, which has anti-inflammatory, antioxidant, antibacterial, and angiogenesis promoting effects, and is a potential drug to promote wound healing. However, the clinical application of resveratrol is limited due to its low bioavailability. In this review, the molecular mechanism of resveratrol in promoting wound healing and its administration methods in wound treatment were reviewed to provide ideas for the redevelopment of resveratrol.

Result Analysis
Print
Save
E-mail