1.Research advances of various omics analyses in chronic refractory wounds on body surface.
Chinese Journal of Burns 2023;39(1):75-80
The diagnosis and treatment of chronic refractory wounds on body surface has always been full of challenges, and it also poses a huge burden on medical care and society. High-throughput sequencing combined with omics analysis can reveal potential mechanisms of chronic wound formation, and identify potential biomarkers related to diagnosis, prognosis, and screening of chronic wound. Combined with multiple levels of omics analysis, the detailed molecular mechanism of chronic wound development can be further explored and understood, so as to provide clues for the formulation of personalized treatment methods and lay a solid foundation for the precision medicine of chronic wounds. Therefore, this review addresses the recent progress of various omics analyses in chronic refractory wounds on body surface.
Precision Medicine/methods*
;
Biomarkers
2. Mechanism of Bmal1 Involved in Irritable Bowel Syndrome via TPH1-5-HT Signaling Pathway in Enterochromaffin Cells
Weiwei ZENG ; Yanjun WANG ; Lu ZOU ; Yuqin HE ; Shili XIAO ; Jing WANG ; Dan QIAO ; Rong ZHAO ; Bin WANG ; Dongfeng CHEN ; Min YANG ; Mei ZHAO ; Shuai WANG
Chinese Journal of Gastroenterology 2022;27(6):321-327
Background: Disrupted circadian rhythms have been associated with the development of irritable bowel syndrome (IBS). In some IBS patients, the symptoms may present with circadian fluctuations. Enterochromaffin cells (EC cells) and tryptophan hydroxylase 1 (TPH1) - 5 - hydroxytryptamine (5 - HT) signaling pathway are currently recognized as the key pathophysiological mechanism of IBS. Aims: To explore whether Bmal1, the core circadian clock gene, is involved in the occurrence of IBS by regulating TPH1-5-HT signaling pathway in EC cells. Methods: Normal Sprague-Dawley (SD) rats and IBS-model SD rats, as well as wild type (WT) and intestine-specific Bmal1 knockout (Bmal1
3.To compare the efficacy and incidence of severe hematological adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia.
Xiao Shuai ZHANG ; Bing Cheng LIU ; Xin DU ; Yan Li ZHANG ; Na XU ; Xiao Li LIU ; Wei Ming LI ; Hai LIN ; Rong LIANG ; Chun Yan CHEN ; Jian HUANG ; Yun Fan YANG ; Huan Ling ZHU ; Ling PAN ; Xiao Dong WANG ; Gui Hui LI ; Zhuo Gang LIU ; Yan Qing ZHANG ; Zhen Fang LIU ; Jian Da HU ; Chun Shui LIU ; Fei LI ; Wei YANG ; Li MENG ; Yan Qiu HAN ; Li E LIN ; Zhen Yu ZHAO ; Chuan Qing TU ; Cai Feng ZHENG ; Yan Liang BAI ; Ze Ping ZHOU ; Su Ning CHEN ; Hui Ying QIU ; Li Jie YANG ; Xiu Li SUN ; Hui SUN ; Li ZHOU ; Ze Lin LIU ; Dan Yu WANG ; Jian Xin GUO ; Li Ping PANG ; Qing Shu ZENG ; Xiao Hui SUO ; Wei Hua ZHANG ; Yuan Jun ZHENG ; Qian JIANG
Chinese Journal of Hematology 2023;44(9):728-736
Objective: To analyze and compare therapy responses, outcomes, and incidence of severe hematologic adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia (CML) . Methods: Data of patients with chronic phase CML diagnosed between January 2006 and November 2022 from 76 centers, aged ≥18 years, and received initial flumatinib or imatinib therapy within 6 months after diagnosis in China were retrospectively interrogated. Propensity score matching (PSM) analysis was performed to reduce the bias of the initial TKI selection, and the therapy responses and outcomes of patients receiving initial flumatinib or imatinib therapy were compared. Results: A total of 4 833 adult patients with CML receiving initial imatinib (n=4 380) or flumatinib (n=453) therapy were included in the study. In the imatinib cohort, the median follow-up time was 54 [interquartile range (IQR), 31-85] months, and the 7-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.2%, 88.4%, 78.3%, and 63.0%, respectively. The 7-year FFS, PFS, and OS rates were 71.8%, 93.0%, and 96.9%, respectively. With the median follow-up of 18 (IQR, 13-25) months in the flumatinib cohort, the 2-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.4%, 86.5%, 58.4%, and 46.6%, respectively. The 2-year FFS, PFS, and OS rates were 80.1%, 95.0%, and 99.5%, respectively. The PSM analysis indicated that patients receiving initial flumatinib therapy had significantly higher cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) and higher probabilities of FFS than those receiving the initial imatinib therapy (all P<0.001), whereas the PFS (P=0.230) and OS (P=0.268) were comparable between the two cohorts. The incidence of severe hematologic adverse events (grade≥Ⅲ) was comparable in the two cohorts. Conclusion: Patients receiving initial flumatinib therapy had higher cumulative incidences of therapy responses and higher probability of FFS than those receiving initial imatinib therapy, whereas the incidence of severe hematologic adverse events was comparable between the two cohorts.
Adult
;
Humans
;
Adolescent
;
Imatinib Mesylate/adverse effects*
;
Incidence
;
Antineoplastic Agents/adverse effects*
;
Retrospective Studies
;
Pyrimidines/adverse effects*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Treatment Outcome
;
Benzamides/adverse effects*
;
Leukemia, Myeloid, Chronic-Phase/drug therapy*
;
Aminopyridines/therapeutic use*
;
Protein Kinase Inhibitors/therapeutic use*