1.A machine learning-based trajectory predictive modeling method for manual acupuncture manipulation.
Jian KANG ; Li LI ; Shu WANG ; Xiaonong FAN ; Jie CHEN ; Jinniu LI ; Wenqi ZHANG ; Yuhe WEI ; Ziyi CHEN ; Jingqi YANG ; Jingwen YANG ; Chong SU
Chinese Acupuncture & Moxibustion 2025;45(9):1221-1232
OBJECTIVE:
To propose a machine learning-based method for predicting the trajectories during manual acupuncture manipulation (MAM), aiming to improve the precision and consistency of acupuncture practitioner' operation and provide the real-time suggestions on MAM error correction.
METHODS:
Computer vision technology was used to analyze the hand micromotion when holding needle during acupuncture, and provide a three-dimensional coordinate description method of the index finger joints of the holding hand. Focusing on the 4 typical motions of MAM, a machine learning-based MAM trajectory predictive model was designed. By integrating the changes of phalangeal joint angle and hand skeletal information of acupuncture practitioner, the motion trajectory of the index finger joint was predicted accurately. Besides, the roles of machine learning-based MAM trajectory predictive model in the skill transmission of acupuncture manipulation were verified by stratified randomized controlled trial.
RESULTS:
The performance of MAM trajectory predictive model, based on the long short-term memory network (LSTM), obtained the highest stability and precision, up to 98%. The learning effect was improved when the model applied to the skill transmission of acupuncture manipulation.
CONCLUSION
The machine learning-based MAM predictive model provides acupuncture practitioner with precise action prediction and feedback. It is valuable and significant for the inheritance and error correction of manual operation of acupuncture.
Humans
;
Acupuncture Therapy/instrumentation*
;
Machine Learning
;
Adult
;
Male
;
Female
2.Mechanism of Jiming Powder in improving mitophagy for treatment of myocardial infarction based on PINK1-Parkin pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Kuo GAO ; Fang-He LI ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(12):3346-3355
In the present study, a mouse model of coronary artery ligation was employed to evaluate the effects of Jiming Powder on mitophagy in the mouse model of myocardial infarction and elucidate its underlying mechanisms. A mouse model of myocardial infarction post heart failure was constructed by ligating the left anterior descending branch of the coronary artery. The therapeutic efficacy of Jiming Powder was assessed from multiple perspectives, including ultrasonographic imaging, hematoxylin-eosin(HE) staining, Masson staining, and serum cardiac enzyme profiling. Dihydroethidium(DHE) staining was employed to evaluate the oxidative stress levels in the hearts of mice from each group. Mitophagy levels were assessed by scanning electron microscopy and immunofluorescence co-localization. Western blot was employed to determine the levels of key proteins involved in mitophagy, including Bcl-2-interacting protein beclin 1(BECN1), sequestosome 1(SQSTM1), microtubule-associated protein 1 light chain 3 beta(LC3B), PTEN-induced putative kinase 1(PINK1), phospho-Parkinson disease protein(p-Parkin), and Parkinson disease protein(Parkin). The results demonstrated that compared with the model group, high and low doses of Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd) and markedly improved the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improving the cardiac function in post-myocardial infarction mice. Jiming Powder effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactate dehydrogenase(LDH), thereby protecting ischemic myocardium. HE staining revealed that Jiming Powder attenuated inflammatory cell infiltration after myocardial infarction. Masson staining indicated that Jiming Powder effectively inhibited ventricular remodeling. Western blot results showed that Jiming Powder activated the PINK1-Parkin pathway, up-regulated the protein level of BECN1, down-regulated the protein level of SQSTM1, and increased the LC3Ⅱ/LC3Ⅰ ratio to promote mitophagy. In conclusion, Jiming Powder exerts therapeutic effects on myocardial infarction by inhibiting ventricular remodeling. The findings pave the way for subsequent pharmacological studies on the active components of Jiming Powder.
Animals
;
Myocardial Infarction/physiopathology*
;
Mitophagy/drug effects*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Protein Kinases/genetics*
;
Male
;
Ubiquitin-Protein Ligases/genetics*
;
Humans
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
3.Mechanism of Jiming Powder in inhibiting ferroptosis in treatment of myocardial infarction based on NRF2/HO-1/GPX4 pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Fang-He LI ; Kuo GAO ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(11):3108-3116
This study employed a mouse model of coronary artery ligation to assess the effect and mechanism of Jiming Powder on mitochondrial autophagy in mice with myocardial infarction. The mouse model of heart failure post-myocardial infarction was established by ligating the left anterior descending coronary artery. The pharmacological efficacy of Jiming Powder was evaluated through echocardiographic imaging, hematoxylin-eosin(HE) staining, and Masson staining. The levels of malondialdehyde(MDA), Fe~(2+), reduced glutathione(GSH), and superoxide dismutase(SOD) in heart tissues, as well as MDA immunofluorescence of heart tissues, were measured to assess lipid peroxidation and Fe~(2+) levels in the hearts of mice in different groups. Ferroptosis levels in the groups were evaluated using scanning electron microscopy and Prussian blue staining. Western blot analysis was conducted to detect the levels of key ferroptosis-related proteins, including nuclear factor erythroid 2-related factor 2(NRF2), ferritin heavy chain(FTH), glutathione peroxidase 4(GPX4), solute carrier family 7 member 11(SLC7A11), heme oxygenase 1(HO-1), and Kelch-like ECH-associated protein 1(KEAP1). The results showed that compared with the model group, both the high-and low-dose Jiming Powder groups exhibited significantly reduced left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd), while the left ventricular ejection fraction(EF) and left ventricular fractional shortening(FS) were significantly improved, effectively enhancing cardiac function in mice post-myocardial infarction. HE staining revealed that Jiming Powder attenuated myocardial inflammatory cell infiltration post-infarction, and Masson staining indicated that Jiming Powder effectively reduced fibrosis in the infarct margin area. Treatment with Jiming Powder reduced the levels of MDA and Fe~(2+), indicators of lipid peroxidation post-myocardial infarction, while increasing GSH and SOD levels, thus protecting ischemic myocardium. Western blot results demonstrated that Jiming Powder reduced KEAP1 protein accumulation, activated the NRF2/HO-1/GPX4 pathway, and up-regulated the protein expression of FTH and SLC7A11, exerting an inhibitory effect on ferroptosis. This study reveals that Jiming Powder exerts a therapeutic effect on myocardial infarction by inhibiting ferroptosis through the NRF2/HO-1/GPX4 pathway, providing a foundation for subsequent research on the pharmacological effects of Jiming Powder.
Animals
;
Ferroptosis/drug effects*
;
Myocardial Infarction/physiopathology*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Heme Oxygenase-1/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Humans
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Disease Models, Animal
4.46,XY disorder of sex development caused by PPP1R12A gene variants: a case report.
Wei SU ; Zhe SU ; Jing-Yu YOU ; Hui-Ping SU ; Li-Li PAN ; Shu-Min FAN ; Jian-Chun YIN
Chinese Journal of Contemporary Pediatrics 2025;27(8):1017-1021
The patient was a boy aged 1 year and 9 months who presented with 46,XY disorder of sex development (DSD), with severe undermasculinization of the external genitalia. Laboratory tests and ultrasound examinations showed normal functions of Leydig cells and Sertoli cells in the testes. Genetic testing revealed a novel pathogenic heterozygous variant, c.1186dupA (p.T396Nfs*17), in the PPP1R12A gene. Thirteen cases of PPP1R12A gene variants have been reported previously. These variants may cause isolated involvement of the genitourinary or neurological systems, or affect other systems/organs including the digestive tract, eyes, heart, etc. Patients with DSD typically present with a 46,XY karyotype and variable degrees of undermasculinization involving the external genitalia, gonads, and reproductive tract. This article reports a child with 46,XY DSD accompanied by growth retardation caused by a heterozygous variant in the PPP1R12A gene, which expands the clinical disease spectrum associated with PPP1R12A gene variants.
Humans
;
Male
;
Infant
;
Disorder of Sex Development, 46,XY/etiology*
;
Protein Phosphatase 1/genetics*
5.Adaptive multi-view learning method for enhanced drug repurposing using chemical-induced transcriptional profiles, knowledge graphs, and large language models.
Yudong YAN ; Yinqi YANG ; Zhuohao TONG ; Yu WANG ; Fan YANG ; Zupeng PAN ; Chuan LIU ; Mingze BAI ; Yongfang XIE ; Yuefei LI ; Kunxian SHU ; Yinghong LI
Journal of Pharmaceutical Analysis 2025;15(6):101275-101275
Drug repurposing offers a promising alternative to traditional drug development and significantly reduces costs and timelines by identifying new therapeutic uses for existing drugs. However, the current approaches often rely on limited data sources and simplistic hypotheses, which restrict their ability to capture the multi-faceted nature of biological systems. This study introduces adaptive multi-view learning (AMVL), a novel methodology that integrates chemical-induced transcriptional profiles (CTPs), knowledge graph (KG) embeddings, and large language model (LLM) representations, to enhance drug repurposing predictions. AMVL incorporates an innovative similarity matrix expansion strategy and leverages multi-view learning (MVL), matrix factorization, and ensemble optimization techniques to integrate heterogeneous multi-source data. Comprehensive evaluations on benchmark datasets (Fdataset, Cdataset, and Ydataset) and the large-scale iDrug dataset demonstrate that AMVL outperforms state-of-the-art (SOTA) methods, achieving superior accuracy in predicting drug-disease associations across multiple metrics. Literature-based validation further confirmed the model's predictive capabilities, with seven out of the top ten predictions corroborated by post-2011 evidence. To promote transparency and reproducibility, all data and codes used in this study were open-sourced, providing resources for processing CTPs, KG, and LLM-based similarity calculations, along with the complete AMVL algorithm and benchmarking procedures. By unifying diverse data modalities, AMVL offers a robust and scalable solution for accelerating drug discovery, fostering advancements in translational medicine and integrating multi-omics data. We aim to inspire further innovations in multi-source data integration and support the development of more precise and efficient strategies for advancing drug discovery and translational medicine.
6.Associations between Red Cell Indices and Cerebral Blood Flow Velocity in High Altitude.
Hao Lun SUN ; Tai Ming ZHANG ; Dong Yu FAN ; Hao Xiang WANG ; Lu Ran XU ; Qing DU ; Jun LIANG ; Li ZHU ; Xu WANG ; Li LEI ; Xiao Shu LI ; Wang Sheng JIN
Biomedical and Environmental Sciences 2025;38(10):1314-1319
7.Bibliometric and Visual Analysis of the Application of in situ Simulation in Medical Field.
Peng-Xia SUN ; Di JIANG ; Shu-Ya LI ; Yan SHI ; Shao-Wen HU ; Jing CHEN ; Fan LI
Acta Academiae Medicinae Sinicae 2025;47(5):830-842
Objective To analyze the research status of in situ simulation in the medical field and explore its hotspots and trends. Methods Relevant literature was searched in China National Knowledge Infrastructure and Web of Science core collection from the inception to February 2024.CiteSpace 6.3.R1 was used to analyze the authors,institutions,and keywords and draw visual knowledge maps. Results A total of 25 Chinese articles and 438 English articles were included.Only 14 English articles were from China.In Chinese articles,the authors with the largest number of articles were Dai Hengmao and Liu Shangkun,and the institution with the largest number of articles was Tongji Hospital affiliated to Tongji Medical College of Huazhong University of Science and Technology.There was little cooperation between the authors and institutions.In English articles,the author and institution with the largest number of articles was Auerbach Marc and Yale University,respectively,and the cooperation between authors and institutions was close.Emergency medicine,emergency event handling,and on-the-job training were the keywords with high frequency in Chinese articles.Patient safety,medical education,and cardiac arrest were the keywords with high frequency in English articles.A total of 4 clusters were generated for Chinese keywords and 13 clusters for English keywords. Conclusions The application of in situ simulation in the medical field is still in the initial stage,and the development is not balanced at home and abroad.The number of articles published and the cooperation between authors and institutions in China obviously lags behind those abroad.Treatment and care of emergency critical patients,emergency event handling and skill training,identification of latent safety threats,improvement of readiness,and promotion of medical quality improvement are the future research hotspots and research trends in this field.
Bibliometrics
;
Humans
;
China
;
Simulation Training
;
Education, Medical
;
Emergency Medicine/education*
8.Study on gene therapy for DPOAE and ABR threshold changes in adult Otof-/- mice.
Zijing WANG ; Qi CAO ; Shaowei HU ; Xintai FAN ; Jun LV ; Hui WANG ; Wuqing WANG ; Huawei LI ; Yilai SHU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):49-56
Objective:This study aims to analyze the threshold changes in distortion product otoacoustic emissions(DPOAE) and auditory brainstem response(ABR) in adult Otof-/- mice before and after gene therapy, evaluating its effectiveness and exploring methods for assessing hearing recovery post-treatment. Methods:At the age of 4 weeks, adult Otof-/- mice received an inner ear injection of a therapeutic agent containing intein-mediated recombination of the OTOF gene, delivered via dual AAV vectors through the round window membrane(RWM). Immunofluorescence staining assessed the proportion of inner ear hair cells with restored otoferlin expression and the number of synapses.Statistical analysis was performed to compare the DPOAE and ABR thresholds before and after the treatment. Results:AAV-PHP. eB demonstrates high transduction efficiency in inner ear hair cells. The therapeutic regimen corrected hearing loss in adult Otof-/- mice without impacting auditory function in wild-type mice. The changes in DPOAE and ABR thresholds after gene therapy are significantly correlated at 16 kHz. Post-treatment,a slight increase in DPOAE was observeds,followed by a recovery trend at 2 months post-treatment. Conclusion:Gene therapy significantly restored hearing in adult Otof-/- mice, though the surgical delivery may cause transient hearing damage. Precise and gentle surgical techniques are essential to maximize gene therapy's efficacy.
Mice
;
Animals
;
Otoacoustic Emissions, Spontaneous/physiology*
;
Hearing/physiology*
;
Ear, Inner
;
Hearing Loss/therapy*
;
Genetic Therapy
;
Auditory Threshold/physiology*
;
Evoked Potentials, Auditory, Brain Stem/physiology*
;
Membrane Proteins
9.Advances in research on neuromodulation of ovarian cancer
Fan-Shu LI ; Yan-Rong SUN ; Yan ZHANG ; Li-Ju LUAN ; Wei-Guang ZHANG
Acta Anatomica Sinica 2024;55(5):647-653
Ovarian cancer is one of the most common gynecologic cancers in the world.Over the past few decades,there has been considerable research reporting on the mechanisms of cancer development and progression,with multiple nerve as well as neurotransmitters involved.Nerve innervation is also found in ovarian cancer.And in ovarian cancer,various nerves and neurotransmitters play different roles.They are involved in ovarian cancer cells'proliferation metastasis,apoptosis and changes in the tumor microenvironment.Further understanding of the role of these nerve endings in the development of ovarian cancer is essential for understanding the mechanisms of cancer progression.This will be important for subsequent research focusing on tumor regulation.While glucocorticoids and sympathetic nerve-released norepinephrine are able to promote ovarian cancer progression,serotonin may inhibit cancer cell growth.Also,parasympathetic and sensory nerves are capable of having either a positive or negative effect on ovarian tumors.These relevant studies offer the possibility of new therapeutic options for oncology,it may be possible to mitigate the progression of cancer with inexpensive receptor inhibitors or agonists.This will facilitate the subsequent exploration of therapeutic possibilities forovarian cancer and other cancer-related treatments.In this review,we also present some insights into the role of the nervous system in the regulation of ovarian cancer,which we hope will provide new insights into the innervation and progression of ovarian cancer.
10.Genome-wide CRISPR screening identifies critical role of phosphatase and tensin homologous(PTEN)in sensitivity of acute myeloid leukemia to chemotherapy
LIN LIMING ; TAO JINGJING ; MENG YING ; GAN YICHAO ; HE XIN ; LI SHU ; ZHANG JIAWEI ; GAO FEIQIONG ; XIN DIJIA ; WANG LUYAO ; FAN YILI ; CHEN BOXIAO ; LU ZHIMIN ; XU YANG
Journal of Zhejiang University. Science. B 2024;25(8):700-710,中插5-中插6
Although significant progress has been made in the development of novel targeted drugs for the treatment of acute myeloid leukemia(AML)in recent years,chemotherapy still remains the mainstay of treatment and the overall survival is poor in most patients.Here,we demonstrated the antileukemia activity of a novel small molecular compound NL101,which is formed through the modification on bendamustine with a suberanilohydroxamic acid(SAHA)radical.NL101 suppresses the proliferation of myeloid malignancy cells and primary AML cells.It induces DNA damage and caspase 3-mediated apoptosis.A genome-wide clustered regularly interspaced short palindromic repeats(CRISPR)library screen revealed that phosphatase and tensin homologous(PTEN)gene is critical for the regulation of cell survival upon NL101 treatment.The knockout or inhibition of PTEN significantly reduced NL101-induced apoptosis in AML and myelodysplastic syndrome(MDS)cells,accompanied by the activation of protein kinase B(AKT)signaling pathway.The inhibition of mammalian target of rapamycin(mTOR)by rapamycin enhanced the sensitivity of AML cells to NL101-induced cell death.These findings uncover PTEN protein expression as a major determinant of chemosensitivity to NL101 and provide a novel strategy to treat AML with the combination of NL101 and rapamycin.

Result Analysis
Print
Save
E-mail