1.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
2.The analysis of invention patents in the field of artificial intelligent medical devices.
Ting ZHANG ; Juan CHEN ; Yan LU ; Dongzi XU ; Shu YAN ; Zhaolian OUYANG
Journal of Biomedical Engineering 2025;42(3):504-511
The emergence of new-generation artificial intelligence technology has brought numerous innovations to the healthcare field, including telemedicine and intelligent care. However, the artificial intelligent medical device sector still faces significant challenges, such as data privacy protection and algorithm reliability. This study, based on invention patent analysis, revealed the technological innovation trends in the field of artificial intelligent medical devices from aspects such as patent application time trends, hot topics, regional distribution, and innovation players. The results showed that global invention patent applications had remained active, with technological innovations primarily focused on medical image processing, physiological signal processing, surgical robots, brain-computer interfaces, and intelligent physiological parameter monitoring technologies. The United States and China led the world in the number of invention patent applications. Major international medical device giants, such as Philips, Siemens, General Electric, and Medtronic, were at the forefront of global technological innovation, with significant advantages in patent application volumes and international market presence. Chinese universities and research institutes, such as Zhejiang University, Tianjin University, and the Shenzhen Institute of Advanced Technology, had demonstrated notable technological innovation, with a relatively high number of patent applications. However, their overseas market expansion remained limited. This study provides a comprehensive overview of the technological innovation trends in the artificial intelligent medical device field and offers valuable information support for industry development from an informatics perspective.
Artificial Intelligence
;
Patents as Topic
;
Humans
;
Inventions
;
China
;
Brain-Computer Interfaces
;
Telemedicine
;
Equipment and Supplies
;
Robotics
;
Algorithms
3.Analysis of the global registration status of clinical trials for artificial intelligence medical device.
Yan LU ; Juan CHEN ; Ting ZHANG ; Shu YAN ; Dongzi XU ; Zhaolian OUYANG
Journal of Biomedical Engineering 2025;42(3):512-519
The rapid development of artificial intelligence technology is driving profound changes in medical practice, particularly in the field of medical device application. Based on data from the U.S. clinical trials registry, this study analyzes the global registration landscape of clinical trials involving artificial intelligence-based medical devices, aiming to provide a reference for their clinical research and application. A total of 2 494 clinical trials related to artificial intelligence medical devices have been registered worldwide, with participation from 66 countries or regions. The United States leads with 908 trials, while for other countries or regions, including China, each has fewer than 300 trials. Germany, the United States, and Belgium serve as central hubs for international collaboration. Among the sponsors, 63.96% are universities or hospitals, 22.36% are enterprises, and the remainder includes individuals, government agencies and others. Of all trials, 79.99% are interventional studies, 94.67% place no restrictions on participant gender, and 69.69% exclude children. The targeted diseases are primarily neurological and mental disorders. This study systematically reveals the global distribution characteristics and research trends of artificial intelligence medical device clinical trials, offering valuable data support and practical insights for advancing international collaboration, resource allocation, and policy development in this field.
Artificial Intelligence
;
Humans
;
Clinical Trials as Topic/statistics & numerical data*
;
Equipment and Supplies
;
Registries
;
United States
4.Gene Mutation Characteristics, Prognosis and Survival Analysis of Patients with Acute Myeloid Leukemia.
Miao HE ; Hong-Juan TIAN ; Dong-Feng MAO ; Xiao-Chen ZHAO ; Shu-Ting ZHANG ; Fang-Qing ZHAO ; Tao WU
Journal of Experimental Hematology 2025;33(3):691-697
OBJECTIVE:
To analyze the gene mutation characteristics and survival time of patients with newly diagnosed acute myeloid leukemia (AML) based on next-generation sequencing(NGS) gene detection.
METHODS:
A retrospective analysis was conducted on the clinical data of 92 patients with AML (non APL) admitted to our hospital from January 2018 to May 2022. AML related genes tested were using NGS, the mutation characteristics and survival time of AML patients were analyzed.
RESULTS:
Among the 92 patients, 41 were males and 51 were females. A total of 38 types of gene mutations were detected. Six-two patients carried at least one gere mutation, while no gene mutations were detected in 30 patients. In the group with favourable prognosis (n =14), the frequencies of higher gene mutations were NRAS, KIT (21.43%, n =3), KRAS (14.29%, n =2). In the group with intermediate prognosis (n =64), the gene mutation frequencies from high to low were DNMT3A (18.75%, n =12), NPM1 (17.19%, n =11), IDH2, FLT3-ITD, CEBPA (12.50%, n =8), TET2 (10.94%, n =7). In the poor prognosis group (n =14), ASXL1, TP53, EZH2, NRAS had higher gene mutation frequency than others(14.29 %, n =2 ). Statistical analysis revealed that KIT had a relative hotspot of mutations in the intermediate-risk group, and DNMT3A had a relative hotspot of mutations in the high-risk group (P < 0.05). The correlation analysis of genes with high mutation rates in different prognostic groups, such as NRAS, KIT, IDH2, DNMT3A, NPM1, and FLT3-ITD, with prognosis found that KIT was a factor affecting OS (P < 0.05), while no significant differences were observed for the others(P >0.05).
CONCLUSION
The frequency of gene mutations is high in AML patients, 67.4% of the patients carried at least one gene mutation. The mutation frequency varies among different genes in patients with different karyotypes, and there are obvious dominant mutations. KIT and DNMT3A can be used as factors for evaluating the prognosis of AML.
Humans
;
Leukemia, Myeloid, Acute/genetics*
;
Nucleophosmin
;
Mutation
;
Prognosis
;
Retrospective Studies
;
Male
;
Female
;
High-Throughput Nucleotide Sequencing
;
Middle Aged
;
DNA Methyltransferase 3A
;
Adult
;
Aged
;
Survival Analysis
;
Proto-Oncogene Proteins c-kit/genetics*
5.Histaminergic Innervation of the Ventral Anterior Thalamic Nucleus Alleviates Motor Deficits in a 6-OHDA-Induced Rat Model of Parkinson's Disease.
Han-Ting XU ; Xiao-Ya XI ; Shuang ZHOU ; Yun-Yong XIE ; Zhi-San CUI ; Bei-Bei ZHANG ; Shu-Tao XIE ; Hong-Zhao LI ; Qi-Peng ZHANG ; Yang PAN ; Xiao-Yang ZHANG ; Jing-Ning ZHU
Neuroscience Bulletin 2025;41(4):551-568
The ventral anterior (VA) nucleus of the thalamus is a major target of the basal ganglia and is closely associated with the pathogenesis of Parkinson's disease (PD). Notably, the VA receives direct innervation from the hypothalamic histaminergic system. However, its role in PD remains unknown. Here, we assessed the contribution of histamine to VA neuronal activity and PD motor deficits. Functional magnetic resonance imaging showed reduced VA activity in PD patients. Optogenetic activation of VA neurons or histaminergic afferents significantly alleviated motor deficits in 6-OHDA-induced PD rats. Furthermore, histamine excited VA neurons via H1 and H2 receptors and their coupled hyperpolarization-activated cyclic nucleotide-gated channels, inward-rectifier K+ channels, or Ca2+-activated K+ channels. These results demonstrate that histaminergic afferents actively compensate for Parkinsonian motor deficits by biasing VA activity. These findings suggest that targeting VA histamine receptors and downstream ion channels may be a potential therapeutic strategy for PD motor dysfunction.
Animals
;
Histamine/metabolism*
;
Male
;
Oxidopamine/toxicity*
;
Rats
;
Ventral Thalamic Nuclei/physiopathology*
;
Rats, Sprague-Dawley
;
Disease Models, Animal
;
Parkinson Disease/metabolism*
;
Neurons/physiology*
;
Humans
;
Optogenetics
6.Upregulation of NR2A in Glutamatergic VTA Neurons Contributes to Chronic Visceral Pain in Male Mice.
Meng-Ge LI ; Shu-Ting QU ; Yang YU ; Zhenhua XU ; Fu-Chao ZHANG ; Yong-Chang LI ; Rong GAO ; Guang-Yin XU
Neuroscience Bulletin 2025;41(12):2113-2126
Chronic visceral pain is a persistent and debilitating condition arising from dysfunction or sensitization of the visceral organs and their associated nervous pathways. Increasing evidence suggests that imbalances in central nervous system function play an essential role in the progression of visceral pain, but the exact mechanisms underlying the neural circuitry and molecular targets remain largely unexplored. In the present study, the ventral tegmental area (VTA) was shown to mediate visceral pain in mice. Visceral pain stimulation increased c-Fos expression and Ca2+ activity of glutamatergic VTA neurons, and optogenetic modulation of glutamatergic VTA neurons altered visceral pain. In particular, the upregulation of NMDA receptor 2A (NR2A) subunits within the VTA resulted in visceral pain in mice. Administration of a selective NR2A inhibitor decreased the number of visceral pain-induced c-Fos positive neurons and attenuated visceral pain. Pharmacology combined with chemogenetics further demonstrated that glutamatergic VTA neurons regulated visceral pain behaviors based on NR2A. In summary, our findings demonstrated that the upregulation of NR2A in glutamatergic VTA neurons plays a critical role in visceral pain. These insights provide a foundation for further comprehension of the neural circuits and molecular targets involved in chronic visceral pain and may pave the way for targeted therapies in chronic visceral pain.
Animals
;
Male
;
Visceral Pain/metabolism*
;
Up-Regulation/physiology*
;
Ventral Tegmental Area/metabolism*
;
Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors*
;
Neurons/drug effects*
;
Mice, Inbred C57BL
;
Mice
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Chronic Pain/metabolism*
;
Glutamic Acid/metabolism*
7.Ursodeoxycholic acid inhibits the uptake of cystine through SLC7A11 and impairs de novo synthesis of glutathione.
Fu'an XIE ; Yujia NIU ; Xiaobing CHEN ; Xu KONG ; Guangting YAN ; Aobo ZHUANG ; Xi LI ; Lanlan LIAN ; Dongmei QIN ; Quan ZHANG ; Ruyi ZHANG ; Kunrong YANG ; Xiaogang XIA ; Kun CHEN ; Mengmeng XIAO ; Chunkang YANG ; Ting WU ; Ye SHEN ; Chundong YU ; Chenghua LUO ; Shu-Hai LIN ; Wengang LI
Journal of Pharmaceutical Analysis 2025;15(1):101068-101068
Ursodeoxycholic acid (UDCA) is a naturally occurring, low-toxicity, and hydrophilic bile acid (BA) in the human body that is converted by intestinal flora using primary BA. Solute carrier family 7 member 11 (SLC7A11) functions to uptake extracellular cystine in exchange for glutamate, and is highly expressed in a variety of human cancers. Retroperitoneal liposarcoma (RLPS) refers to liposarcoma originating from the retroperitoneal area. Lipidomics analysis revealed that UDCA was one of the most significantly downregulated metabolites in sera of RLPS patients compared with healthy subjects. The augmentation of UDCA concentration (≥25 μg/mL) demonstrated a suppressive effect on the proliferation of liposarcoma cells. [15N2]-cystine and [13C5]-glutamine isotope tracing revealed that UDCA impairs cystine uptake and glutathione (GSH) synthesis. Mechanistically, UDCA binds to the cystine transporter SLC7A11 to inhibit cystine uptake and impair GSH de novo synthesis, leading to reactive oxygen species (ROS) accumulation and mitochondrial oxidative damage. Furthermore, UDCA can promote the anti-cancer effects of ferroptosis inducers (Erastin, RSL3), the murine double minute 2 (MDM2) inhibitors (Nutlin 3a, RG7112), cyclin dependent kinase 4 (CDK4) inhibitor (Abemaciclib), and glutaminase inhibitor (CB839). Together, UDCA functions as a cystine exchange factor that binds to SLC7A11 for antitumor activity, and SLC7A11 is not only a new transporter for BA but also a clinically applicable target for UDCA. More importantly, in combination with other antitumor chemotherapy or physiotherapy treatments, UDCA may provide effective and promising treatment strategies for RLPS or other types of tumors in a ROS-dependent manner.
8.Comprehensive Analysis of Oncogenic, Prognostic, and Immunological Roles of FANCD2 in Hepatocellular Carcinoma: A Potential Predictor for Survival and Immunotherapy.
Meng Jiao XU ; Wen DENG ; Ting Ting JIANG ; Shi Yu WANG ; Ru Yu LIU ; Min CHANG ; Shu Ling WU ; Ge SHEN ; Xiao Xue CHEN ; Yuan Jiao GAO ; Hongxiao HAO ; Lei Ping HU ; Lu ZHANG ; Yao LU ; Wei YI ; Yao XIE ; Ming Hui LI
Biomedical and Environmental Sciences 2025;38(3):313-327
OBJECTIVE:
Hepatocellular carcinoma (HCC) is sensitive to ferroptosis, a new form of programmed cell death that occurs in most tumor types. However, the mechanism through which ferroptosis modulates HCC remains unclear. This study aimed to investigate the oncogenic role and prognostic value of FANCD2 and provide novel insights into the prognostic assessment and prediction of immunotherapy.
METHODS:
Using clinicopathological parameters and bioinformatic techniques, we comprehensively examined the expression of FANCD2 macroscopically and microcosmically. We conducted univariate and multivariate Cox regression analyses to identify the prognostic value of FANCD2 in HCC and elucidated the detailed molecular mechanisms underlying the involvement of FANCD2 in oncogenesis by promoting iron-related death.
RESULTS:
FANCD2 was significantly upregulated in digestive system cancers with abundant immune infiltration. As an independent risk factor for HCC, a high FANCD2 expression level was associated with poor clinical outcomes and response to immune checkpoint blockade. Gene set enrichment analysis revealed that FANCD2 was mainly involved in the cell cycle and CYP450 metabolism.
CONCLUSION
To the best of our knowledge, this is the first study to comprehensively elucidate the oncogenic role of FANCD2. FANCD2 has a tumor-promoting aspect in the digestive system and acts as an independent risk factor in HCC; hence, it has recognized value for predicting tumor aggressiveness and prognosis and may be a potential biomarker for poor responsiveness to immunotherapy.
Humans
;
Carcinoma, Hepatocellular/diagnosis*
;
Liver Neoplasms/diagnosis*
;
Immunotherapy
;
Fanconi Anemia Complementation Group D2 Protein/metabolism*
;
Prognosis
;
Male
;
Female
;
Middle Aged
;
Biomarkers, Tumor/metabolism*
9.Research Progress in Copper Homeostasis and Diseases.
Shu-Ting QIU ; Xiao-Hua TAN ; Shi-Han SHAO ; Li YU ; Ying-Ying ZHANG ; Yue-Jia CAO ; Di CHUN-HONG
Acta Academiae Medicinae Sinicae 2025;47(1):102-109
As an indispensable trace element in the human body,copper plays an important role in various physiological and biochemical reactions.The dyshomeostasis of copper leads to the disorder of copper metabolism and the occurrence of related diseases.Cuproptosis,a newly proposed regulatory cell death mode,is different from the known apoptosis,pyroptosis,necroptosis,and ferroptosis.Recent studies have found that the dyshomeostasis of copper has been observed in a variety of cancers.Therefore,targeting copper for disease treatment may become a new strategy and a new idea.This article systematically summarizes the fundamental properties of copper,copper dyshomeostasis-related diseases (Menkes syndrome,Wilson's disease,and cancer) and their treatment,and reviews the research progress in cuproptosis.
Humans
;
Copper/metabolism*
;
Homeostasis
;
Neoplasms/metabolism*
;
Hepatolenticular Degeneration/metabolism*
;
Menkes Kinky Hair Syndrome/metabolism*
10.Pediatric appendicovesical fistula: a case report and literature review
Zheng FANG ; Xiangming YAN ; Ting ZHANG ; Xu CAO ; Tianyi WANG ; Hongchao WANG ; Jun LIU ; Ting FENG ; Yi SUN ; Shu DAI
Chinese Journal of Urology 2024;45(8):619-623
Objective:This study aims to discuss the diagnosis and treatment of pediatric appendicovesical fistula (AVF).Methods:A retrospective analysis was conducted on the clinical data of a pediatric patient with AVF admitted to our hospital in March 2023. The patient was a 6-year and 11-month old male who was hospitalized on March 21, 2023, due to difficulty urinating accompanied by diarrhea for two weeks. Computed tomography (CT) revealed bladder stones. The preoperative diagnosis was bladder stones. Transurethral cystoscopic lithotripsy with laser was performed under general anesthesia. Two weeks postoperatively, the child presented with recurrent symptoms of frequent urination, urinary pain, and diarrhea. Urine routine examination indicated a urinary tract infection. Over a month of antibiotic treatment was ineffective, and symptoms such as pneumaturia and fecaluria emerged, with exacerbation of diarrhea, suggesting the possibility of a fistulous tract between the child's intestine and bladder. Further bladder ultrasonography with contrast showed microbubbles of contrast medium leaking from the right posterior bladder wall into the intestinal tract. Enhanced magnetic resonance imaging (MRI) demonstrated a small, sharp tube-like shadow at the upper edge of the right posterior bladder, with a strip-like, significantly enhanced shadow within the lumen. The preoperative diagnosis was revised to appendicovesical fistula. During cystoscopic examination, a papillary-like protrusion was identified on the right lateral wall of the bladder, with no evident orificium fistulae or foreign body discharge noted at the protrusion site. Consequently, robot-assisted laparoscopic partial cystectomy, appendectomy, and lysis of adhesions were performed.Results:The patient was administered antibiotic for a 10-day course of anti-infection and a urinary catheter was maintained for 13 days. The patient recovered entirely and had been discharged after the removal of the urinary catheter. At an 11-month follow-up, there were no reported specific discomforts.Conclusions:Pediatric AVF is rare, and bladder contrast-enhanced ultrasonography and MRI are preferred for initial diagnostic evaluation. The diagnosis can be confirmed by specific clinical presentations such as intermittent pneumaturia and fecaluria, diarrhea with bladder stones. Laparoscopic surgery or robot-assisted laparoscopic surgery could be a feasible treatment option.

Result Analysis
Print
Save
E-mail