1.Pharmacological effects of Yindan Pinggan capsules in treating intrahepatic cholestasis
Shu-xin CAO ; Feng HUANG ; Fang WU ; Rong-rong HE
Acta Pharmaceutica Sinica 2025;60(2):417-426
This study aimed to investigate the therapeutic effect of Yindan Pinggan capsules (YDPG) on intrahepatic cholestasis (IHC) through animal experiments, while utilizing network pharmacology and molecular docking techniques to explore its potential mechanisms. Initially, the therapeutic effect of YDPG on an
2.Effect and mechanisms of highly active umbilical cord mesenchymal stem cells on aging spleen in elderly tree shrews
Li YE ; Chuan TIAN ; Xiaojuan ZHAO ; Mengdie CHEN ; Qianqian YE ; Qiang LI ; Zhuyin LIAO ; Ye LI ; Xiangqing ZHU ; Guangping RUAN ; Zhixu HE ; Liping SHU ; Xinghua PAN
Chinese Journal of Tissue Engineering Research 2025;29(19):4000-4010
BACKGROUND:Spleen has the functions of blood storage,hematopoiesis,and immunity.With the increase of age,the structural degeneration and functional decline of spleen lead to the impairment of immune system function,thus accelerating the aging process of the body.The treatment of spleen aging in tree shrews with highly active umbilical cord mesenchymal stem cells has not been reported. OBJECTIVE:To explore the intervention effect and mechanism of highly active umbilical cord mesenchymal stem cells on spleen aging in tree shrews. METHODS:Highly active umbilical cord mesenchymal stem cells were isolated,cultured,and obtained from the umbilical cord tissue of newborn tree shrews by caesarean section.The differentiation abilities of adipogenesis,osteogenesis,and chondrogenesis were detected by three-line differentiation kit.Cell cycle and surface markers were detected by flow cytometry.The second generation of highly active umbilical cord mesenchymal stem cells were transfected with Genechem Green Fluorescent Protein with infection complex values of 100,120,140,160,180,and 200,respectively,to screen the best transfection conditions.After transfection,the fourth generation of highly active umbilical cord mesenchymal stem cells was injected into the tail vein of tree shrews in the elderly treatment group.The young control group and the aged model group were not given special treatment.After 4 months of treatment,the spleen tissue was taken and the structure of the spleen was observed by hematoxylin-eosin staining.β-Galactosidase staining was used to detect the activity of aging-related galactosidase.Immunohistochemical staining was used to detect the expression levels of p21 and p53 proteins.Ki67 and PCNA immunofluorescence staining was used to detect cell proliferation activity.Immunofluorescence staining was used to detect the expression levels of spleen autophagy protein molecules Beclin 1 and APG5L/ATG5.Reactive oxygen species fluorescence staining was used to detect the content of reactive oxygen species in spleen tissue.CD3 immunofluorescence staining was used to detect the change of the proportion of total T lymphocytes.The secretion levels of interleukin 1β and transforming growth factor β1 in spleen were detected by enzyme linked immunosorbent assay.The distribution of highly active umbilical cord mesenchymal stem cells labeled with green fluorescent protein in spleen tissue was observed by DAPI double staining of nucleus. RESULTS AND CONCLUSION:(1)Highly active umbilical cord mesenchymal stem cells grew in a short spindle shape with fish-like growth,with a large proportion of G0/G1 phase,and had the potential to differentiate into adipogenesis,osteogenesis,and chondrogenesis.(2)Multiplicity of infection=140 and transfection for 72 hours were the best conditions for labeling tree shrews highly active umbilical cord mesenchymal stem cells with Genechem Green Fluorescent Protein.(3)Compared with the aged model group,in the aged treatment group,the spleen tissue cells of tree shrews were arranged closely,and the area of white pulp was increased(P<0.01);the boundary between red pulp and white pulp was clear;the proportion of germinal centers did not show statistically significant difference(P>0.05).The activity level of galactosidase related to spleen tissue aging was decreased(P<0.001),and the expression levels of aging protein molecules p21 and p53 were down-regulated(P<0.001).The expression levels of proliferation-related molecules Ki67 and PCNA were up-regulated(P<0.001,P<0.05);expression levels of autophagy-related molecules Beclin 1 and APG5L/ATG5 were up-regulated(P<0.001),and the content of reactive oxygen species decreased(P<0.001),and the proportion of CD3+T cells increased(P<0.05).The secretion level of interleukin 1β in the aging-related secretion phenotype decreased(P<0.001);no significant difference was found in transforming growth factor β1 level(P>0.05).Compared with the young control group,the above indexes were significantly different in the elderly treatment group(P<0.05).(4)Green fluorescent cells labeled with green fluorescent protein were observed in spleen tissue of tree shrews the elderly treatment group by frozen tissue section observation.The results show that intravenous infusion of highly active umbilical cord mesenchymal stem cells can migrate to spleen tissue,inhibit the production of reactive oxygen species,down-regulate the expression of aging-related proteins,induce autophagy,promote cell proliferation,reduce chronic inflammation,and then improve the structure and function of spleen tissue.
3.Updates and amendments of the Chinese Pharmacopoeia 2025 Edition (Volume Ⅰ)
LI Hao ; SHEN Mingrui ; ZHANG Pang ; ZHAI Weimin ; NI Long ; HAO Bo ; ZHAO Yuxin ; HE Yi ; MA Shuangcheng ; SHU Rong
Drug Standards of China 2025;26(1):017-022
The Chinese Pharmacopoeia is the legal technical standard which should be followed during the research, production, use, and administration of drugs. At present, the new edition of the Chinese Pharmacopoeia is planned to be promulgated and implemented. This article summarizes and analyzes the main characteristics and the content of updates and amendments of the Chinese Pharmacopoeia 2025 Edition(Volume Ⅰ), to provide a reference for the correct understanding and accurate implementation the new edition of the pharmacopoeia.
4.Study on relationships of MS4A1 gene polymorphism with blood concentration and efficacy of rituximab in patients with non-Hodgkin’s lymphoma
Feng SHI ; Tao LIU ; He HUANG ; Caifu FANG ; Shaoxing GUAN ; Zhang ZHANG ; Zhao WANG ; Xiaojie FANG ; Zhuojia CHEN ; Shu LIU
China Pharmacy 2025;36(13):1641-1647
OBJECTIVE To explore the effects of CD20 coding gene (MS4A1) polymorphism on the blood concentration and efficacy of rituximab in patients with non-Hodgkin’s lymphoma. METHODS A prospective observational study was conducted on 160 newly diagnosed non-Hodgkin’s lymphoma patients who received the R-CHOP regimen at the Sun Yat Sen University Cancer Center from January 2016 to December 2020, with a minimum follow-up period of approximately 5 years. The blood concentration of rituximab was detected by enzyme-linked immunosorbent assay. MS4A1 tagSNPs were selected by Haploview4.2 software, including rs1051461, rs17155034, rs4939364, and rs10501385. The genotype of MS4A1 was detected by Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Univariate linear regression analysis was employed to examine the correlation between various factors(demographic, clinical, and genotypic variables) in patients and the steady-state trough concentration of rituximab during the first course of treatment, followed by multivariate linear regression analysis. Kaplan-Meier curves were drawn to evaluate progression-free survival (PFS) and overall survival (OS). Using MS4A1 genotype and tumor stage as independent variables, Cox regression model was employed to evaluate the factors influencing patient prognosis. RESULTS The blood concentration of rituximab in MS4A1 rs10501385 CC carriers was 15.20 μg/mL,which was significantly lower than 21.95 μg/mL in AA+AC carriers (P<0.05). The multivariate linear regression model incorporating tumor stage and MS4A1 rs10501385 polymorphism explained 7.3% of the interindividual variability in rituximab concentrations. Compared with MS4A1 rs1051461 CC carriers, CT+TT carriers had significantly prolonged PFS and OS (P<0.05). The Cox proportional hazards regression model showed that the MS4A1 rs1051461 CC genotype (HR=4.406, 95%CI:1.743-11.137, P<0.05) and tumor Ⅲ&Ⅳ (HR=3.233, 95%CI: 1.413-7.399, P<0.05) were independent risk factors for PFS. CONCLUSIONS The tumor staging and MS4A1 rs10501385 polymorphism are key influencing factors for blood concentration of rituximab, and MS4A1 rs1051461 polymorphism significantly affects PFS in non-Hodgkin’s lymphoma patients.
5.Advances in diffuse optical technology lenses for myopia control
Kun HE ; Bingxin PAN ; Suyun YANG ; Zhiyang HE ; Mengting ZHENG ; Meiling SHU ; Pengfei JIANG ; Shan XU ; Pengfei TIAN
International Eye Science 2025;25(9):1476-1483
Recent years have witnessed significant advancements in myopia control research through the application of diffuse optical technology(DOT)spectacle lenses. Myopia has emerged as a global public health challenge, affecting nearly half of the world's population, with childhood and adolescent myopia rates continuing to rise. DOT lenses represent an innovative myopia control intervention based on retinal contrast signal theory. These lenses incorporate micro-light scattering dots distributed across the lens surface to reduce retinal imaging contrast and modulate the influence of visual input on axial elongation, thereby slowing myopia progression. The core mechanism operates through refractive index differences between the lens substrate(1.53)and scattering dots(1.50), which generate optical scattering effects. This design maintains clear vision through a central 5 mm optical zone while effectively reducing contrast signal intensity in the peripheral retina. Large-scale randomized controlled trials, including the CYPRESS study, have demonstrated significant myopia control efficacy in children aged 6-10 years: 12-month follow-up data revealed a 74% reduction in myopia progression and a 50% reduction in axial elongation, with sustained safety and visual quality maintained over 4-year long-term follow-up. However, several aspects of DOT technology remain contentious and require further clinical validation, including its applicability across different age groups, optimal scattering dot density configurations, combined application effects with other myopia control methods, and long-term visual adaptation during extended use. This review systematically examines the theoretical foundations, design characteristics, clinical application progress, and future development directions of DOT technology, providing scientific evidence for clinical myopia prevention and control strategy formulation.
6.COVID-19 outcomes in patients with pre-existing interstitial lung disease: A national multi-center registry-based study in China.
Xinran ZHANG ; Bingbing XIE ; Huilan ZHANG ; Yanhong REN ; Qun LUO ; Junling YANG ; Jiuwu BAI ; Xiu GU ; Hong JIN ; Jing GENG ; Shiyao WANG ; Xuan HE ; Dingyuan JIANG ; Jiarui HE ; Sa LUO ; Shi SHU ; Huaping DAI
Chinese Medical Journal 2025;138(9):1126-1128
7.Mechanism of Jiming Powder in improving mitophagy for treatment of myocardial infarction based on PINK1-Parkin pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Kuo GAO ; Fang-He LI ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(12):3346-3355
In the present study, a mouse model of coronary artery ligation was employed to evaluate the effects of Jiming Powder on mitophagy in the mouse model of myocardial infarction and elucidate its underlying mechanisms. A mouse model of myocardial infarction post heart failure was constructed by ligating the left anterior descending branch of the coronary artery. The therapeutic efficacy of Jiming Powder was assessed from multiple perspectives, including ultrasonographic imaging, hematoxylin-eosin(HE) staining, Masson staining, and serum cardiac enzyme profiling. Dihydroethidium(DHE) staining was employed to evaluate the oxidative stress levels in the hearts of mice from each group. Mitophagy levels were assessed by scanning electron microscopy and immunofluorescence co-localization. Western blot was employed to determine the levels of key proteins involved in mitophagy, including Bcl-2-interacting protein beclin 1(BECN1), sequestosome 1(SQSTM1), microtubule-associated protein 1 light chain 3 beta(LC3B), PTEN-induced putative kinase 1(PINK1), phospho-Parkinson disease protein(p-Parkin), and Parkinson disease protein(Parkin). The results demonstrated that compared with the model group, high and low doses of Jiming Powder significantly reduced the left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd) and markedly improved the left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), effectively improving the cardiac function in post-myocardial infarction mice. Jiming Powder effectively reduced the levels of myocardial injury markers such as creatine kinase(CK), creatine kinase isoenzyme(CK-MB), and lactate dehydrogenase(LDH), thereby protecting ischemic myocardium. HE staining revealed that Jiming Powder attenuated inflammatory cell infiltration after myocardial infarction. Masson staining indicated that Jiming Powder effectively inhibited ventricular remodeling. Western blot results showed that Jiming Powder activated the PINK1-Parkin pathway, up-regulated the protein level of BECN1, down-regulated the protein level of SQSTM1, and increased the LC3Ⅱ/LC3Ⅰ ratio to promote mitophagy. In conclusion, Jiming Powder exerts therapeutic effects on myocardial infarction by inhibiting ventricular remodeling. The findings pave the way for subsequent pharmacological studies on the active components of Jiming Powder.
Animals
;
Myocardial Infarction/physiopathology*
;
Mitophagy/drug effects*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Protein Kinases/genetics*
;
Male
;
Ubiquitin-Protein Ligases/genetics*
;
Humans
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
8.Research progress on Parkinson's disease treatment with traditional Chinese medicine via regulating Nrf2/HO-1 signaling pathway.
Le SHU ; Xing-Ke YAN ; Si-Rui MA ; Gui-Shun HE
China Journal of Chinese Materia Medica 2025;50(11):2982-2993
Parkinson's disease(PD) is a neurodegenerative disorder characterized by the progressive degeneration of dopaminergic neurons in the substantia nigra and the accumulation of Lewy bodies. While conventional drugs like levodopa can improve early symptoms, their efficacy diminishes over time, and they may cause severe side effects. Traditional Chinese medicine(TCM), with its multi-target therapeutic approach, has shown unique advantages in PD treatment, particularly in slowing disease progression and improving clinical symptoms. The nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1) signaling pathway plays a critical role in cellular antioxidation, anti-inflammation, and cellular repair mechanisms, which are crucial for neuroprotection against PD. Studies indicate that TCM regulates the Nrf2/HO-1 pathway to enhance neuronal antioxidative capacity, inhibit neuroinflammation, promote dopaminergic neuron repair and survival, and slow pathological progression. This review explores the neuroprotective role of the Nrf2/HO-1 pathway in PD patients, including alleviating oxidative stress, suppressing neuroinflammation, promoting neuronal repair, and regulating iron metabolism and autophagy. It also discusses the mechanisms by which TCM active ingredients(flavonoids, alkaloids, terpenes, saponins, polyphenols, etc.), single herbs(Cistanche deserticola, Uraria crinite, and Melissa officinalis, etc.), and formulas(Bushen Jianpi Decoction, Didang Decoction, and Gancao Yangyin Decoction, etc.) modulate the Nrf2/HO-1 pathway in PD treatment, providing a theoretical basis for the clinical application and new drug development of TCM in PD prevention and treatment.
Humans
;
Parkinson Disease/genetics*
;
NF-E2-Related Factor 2/genetics*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Heme Oxygenase-1/genetics*
;
Medicine, Chinese Traditional
9.Mechanism of Jiming Powder in inhibiting ferroptosis in treatment of myocardial infarction based on NRF2/HO-1/GPX4 pathway.
Xin-Yi FAN ; Xiao-Qi WEI ; Wang-Jing CHAI ; Fang-He LI ; Kuo GAO ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2025;50(11):3108-3116
This study employed a mouse model of coronary artery ligation to assess the effect and mechanism of Jiming Powder on mitochondrial autophagy in mice with myocardial infarction. The mouse model of heart failure post-myocardial infarction was established by ligating the left anterior descending coronary artery. The pharmacological efficacy of Jiming Powder was evaluated through echocardiographic imaging, hematoxylin-eosin(HE) staining, and Masson staining. The levels of malondialdehyde(MDA), Fe~(2+), reduced glutathione(GSH), and superoxide dismutase(SOD) in heart tissues, as well as MDA immunofluorescence of heart tissues, were measured to assess lipid peroxidation and Fe~(2+) levels in the hearts of mice in different groups. Ferroptosis levels in the groups were evaluated using scanning electron microscopy and Prussian blue staining. Western blot analysis was conducted to detect the levels of key ferroptosis-related proteins, including nuclear factor erythroid 2-related factor 2(NRF2), ferritin heavy chain(FTH), glutathione peroxidase 4(GPX4), solute carrier family 7 member 11(SLC7A11), heme oxygenase 1(HO-1), and Kelch-like ECH-associated protein 1(KEAP1). The results showed that compared with the model group, both the high-and low-dose Jiming Powder groups exhibited significantly reduced left ventricular internal diameter in systole(LVIDs) and left ventricular internal diameter in diastole(LVIDd), while the left ventricular ejection fraction(EF) and left ventricular fractional shortening(FS) were significantly improved, effectively enhancing cardiac function in mice post-myocardial infarction. HE staining revealed that Jiming Powder attenuated myocardial inflammatory cell infiltration post-infarction, and Masson staining indicated that Jiming Powder effectively reduced fibrosis in the infarct margin area. Treatment with Jiming Powder reduced the levels of MDA and Fe~(2+), indicators of lipid peroxidation post-myocardial infarction, while increasing GSH and SOD levels, thus protecting ischemic myocardium. Western blot results demonstrated that Jiming Powder reduced KEAP1 protein accumulation, activated the NRF2/HO-1/GPX4 pathway, and up-regulated the protein expression of FTH and SLC7A11, exerting an inhibitory effect on ferroptosis. This study reveals that Jiming Powder exerts a therapeutic effect on myocardial infarction by inhibiting ferroptosis through the NRF2/HO-1/GPX4 pathway, providing a foundation for subsequent research on the pharmacological effects of Jiming Powder.
Animals
;
Ferroptosis/drug effects*
;
Myocardial Infarction/physiopathology*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Male
;
Heme Oxygenase-1/genetics*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Humans
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Disease Models, Animal
10.Mechanism of Chaijin Jieyu Anshen Formula in regulating synaptic damage in nucleus accumbens neurons of rats with insomnia complicated with depression through TREM2/C1q axis.
Ying-Juan TANG ; Jia-Cheng DAI ; Song YANG ; Xiao-Shi YU ; Yao ZHANG ; Hai-Long SU ; Zhi-Yuan LIU ; Zi-Xuan XIANG ; Jun-Cheng LIU ; Hai-Xia HE ; Jian LIU ; Yuan-Shan HAN ; Yu-Hong WANG ; Man-Shu ZOU
China Journal of Chinese Materia Medica 2025;50(16):4538-4545
This study aims to investigate the effect of Chaijin Jieyu Anshen Formula on the neuroinflammation of rats with insomnia complicated with depression through the regulation of triggering receptor expressed on myeloid cells 2(TREM2)/complement protein C1q signaling pathway. Rats were randomly divided into a normal group, a model group, a positive drug group, as well as a high, medium, and low-dose groups of Chaijin Jieyu Anshen Formula, with 10 rats in each group. Except for the normal group, the other groups were injected with p-chlorophenylalanine and exposed to chronic unpredictable mild stress to establish the rat model of insomnia complicated with depression. The sucrose preference experiment, open field experiment, and water maze test were performed to evaluate the depression in rats. Enzyme-linked immunosorbent assay was employed to detect serum 5-hydroxytryptamine(5-HT), dopamine(DA), and norepinephrine(NE) levels. Hematoxylin and eosin staining and Nissl staining were used to observe the damage in nucleus accumbens neurons. Western blot and immunofluorescence were performed to detect TREM2, C1q, postsynaptic density 95(PSD-95), and synaptophysin 1(SYN1) expressions in rat nucleus accumbens, respectively. Golgi-Cox staining was utilized to observe the synaptic spine density of nucleus accumbens neurons. The results show that, compared with the model group, Chaijin Jieyu Anshen Formula can significantly increase the sucrose preference as well as the distance and number of voluntary activities, shorten the immobility time in forced swimming test and the successful incubation period of positioning navigation, and prolong the stay time of space exploration in the target quadrant test. The serum 5-HT, DA, and NE contents in the model group are significantly lower than those in the normal group, with the above contents significantly increased after the intervention of Chaijin Jieyu Anshen Formula. In addition, Chaijin Jieyu Anshen Formula can alleviate pathological damages such as swelling and loose arrangement of tissue cells in the nucleus accumbens, while increasing the Nissl body numbers. Chaijin Jieyu Anshen Formula can improve synaptic damage in the nucleus accumbens and increase the synaptic spine density. Compared to the normal group, the expression of C1q protein was significantly higher in the model group, while the expression of TREM2 protein was significantly lower. Compared to the model group, the intervention with Chaijin Jieyu Anshen Formula significantly downregulated the expression of C1q protein and significantly upregulated the expression of TREM2. Compared with the model group, the PSD-95 and SYN1 fluorescence intensity is significantly increased in the groups receiving different doses of Chaijin Jieyu Anshen Formula. In summary, Chaijin Jieyu Anshen Formula can reduce the C1q protein expression, relieve the TREM2 inhibition, and promote the synapse-related proteins PSD-95 and SNY1 expression. Chaijin Jieyu Anshen Formula improves synaptic injury of the nucleus accumbens neurons, thereby treating insomnia complicated with depression.
Animals
;
Male
;
Rats
;
Nucleus Accumbens/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Depression/complications*
;
Membrane Glycoproteins/genetics*
;
Rats, Sprague-Dawley
;
Sleep Initiation and Maintenance Disorders/complications*
;
Neurons/metabolism*
;
Receptors, Immunologic/genetics*
;
Signal Transduction/drug effects*
;
Synapses/metabolism*

Result Analysis
Print
Save
E-mail