1.Identification of compound heterozygous mutations of SACS gene in two patients from a pedigree with spastic ataxia of Charlevoix-Saguenay.
Shirong LI ; Yongping CHEN ; Xiaoqin YUAN ; Qianqian WEI ; Ruwei OU ; Xiaojing GU ; Huifang SHANG
Chinese Journal of Medical Genetics 2018;35(4):507-510
OBJECTIVETo detect potential mutations of the spastic ataxia of Charlevoix-Saguenay (SACS) gene in a pedigree affected with autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS).
METHODSGenomic DNA was extracted from peripheral blood samples of the proband and her family members. All exons and flanking sequences of the SACS gene were analyzed by high-throughput sequencing. Suspected mutations were verified with Sanger sequencing.
RESULTSNext generation sequencing revealed novel compound heterozygous mutations of the SACS gene, namely c.13085T to G (p.I4362R) and c.5236dupA (p.T1746fs), in the proband, which were respectively derived from her parents. The mutations were confirmed by Sanger sequencing.
CONCLUSIONThe c.5236dupA (p.T1746fs) and c.13085T to G (p.I4362R) mutations of the SACS gene probably underlie the ocular symptoms and hearing loss in the proband.
2.Preparation, characterization and biocompatibility of calcium peroxide-loaded polycaprolactone microparticles.
Leidong LIAN ; Zechen SUN ; Jinhao ZHANG ; Shirong GU ; Chenjie XIA ; Kaifeng GAN
Journal of Zhejiang University. Medical sciences 2023;52(3):296-305
OBJECTIVES:
To explore the physicochemical characteristics and biocompatibility of calcium peroxide (CPO)-loaded polycaprolactone (PCL) microparticle.
METHODS:
The CPO/PCL particles were prepared. The morphology and elemental distribution of CPO, PCL and CPO/PCL particles were observed with scanning electron microscopy and energy dispersive spectroscopy, respectively. Rat adipose mesenchymal stem cells were isolated and treated with different concentrations (0.10%, 0.25%, 0.50%, 1.00%) of CPO or CPO/PCL particles. The mesenchymal stem cells were cultured in normal media or osteogenic differentiation media under the hypoxia/normoxia conditions, and the amount of released O2 and H2O2 after CPO/PCL treatment were detected. The gene expressions of alkaline phosphatase (ALP), Runt-associated transcription factor 2 (RUNX2), osteopontin (OPN) and osteocalcin (OCN) were detected by realtime RT-PCR. SD rats were subcutaneously injected with 1.00% CPO/PCL particles and the pathological changes and infiltration of immune cells were observed with HE staining and immunohistochemistry at day 7 and day 14 after injection.
RESULTS:
Scanning electron microscope showed that CPO particles had a polygonal structure, PCL particles were in a small spherical plastic particle state, and CPO/PCL particles had a block-like crystal structure. Energy dispersive spectroscopy revealed that PCL particles showed no calcium mapping, while CPO/PCL particles showed obvious and uniform calcium mapping. The concentrations of O2 and H2O2 released by CPO/PCL particles were lower than those of CPO group, and the oxygen release time was longer. The expressions of Alp, Runx2, Ocn and Opn increased with the higher content of CPO/PCL particles under hypoxia in osteogenic differentiation culture and normal culture, and the induction was more obvious under osteogenic differentiation conditions (all P<0.05). HE staining results showed that the muscle tissue fibers around the injection site were scattered and disorderly distributed, with varying sizes and thicknesses at day 7 after particle injection. Significant vascular congestion, widened gaps, mild interstitial congestion, local edema, inflammatory cell infiltration, and large area vacuolization were observed in some tissues of rats. At day 14 after microparticle injection, the muscle tissue around the injection site and the tissue fibers at the microparticle implantation site were arranged neatly, and the gap size was not thickened, the vascular congestion, local inflammatory cell infiltration, and vacuolization were significantly improved compared with those at day 7. The immunohistochemical staining results showed that the expressions of CD3 and CD68 positive cells significantly increased in the surrounding muscle tissue, and were densely distributed in a large area at day 7 after particle injection. At day 14 of microparticle injection, the numbers of CD3 and CD68 positive cells in peripheral muscle tissue and tissue at the site of particle implantation were lower than those at day 7 (all P<0.01).
CONCLUSIONS
CPO/PCL particles have good oxygen release activity, low damage to tissue, and excellent biocompatibility.
Rats
;
Animals
;
Osteogenesis
;
Core Binding Factor Alpha 1 Subunit
;
Rats, Sprague-Dawley
;
Hydrogen Peroxide/pharmacology*
;
Cell Differentiation
;
Oxygen
;
Hypoxia
;
Cells, Cultured