1.Recent refinements and advances for pancreatoduodenectomy
Yuji Morine ; Mitsuo Shimada ; Satoru Imura ; Tetsuya Ikemoto ; Yusuke Arakawa ; Syuichi Iwahashi ; Yu Saito ; Shinichiro Yamada ; Daichi Ishikawa
Innovation 2014;8(4):136-137
Background: The technique of pancreatoduodenectomy (PD) has evolved, and
artery first’ approach was considered for the intraoperative early determination
of resectability for borderline resectable cases before the ‘point of no return’
and avoidance of blood congestion resulted in the reduction of blood loss. Also,
active application of energy device was useful for the reduced operative time and
blood loss. Recently, 3D simulation for hepatobiliary pancreatic surgery has been
useful and mandatory. In this presentation, we introduced our recent refinements
and advances for PD.
‘Artery first’ approach and vessel sealing system for PD: ‘Artery first’ approach
were considered as six different methods as follows; 1) Superior approach, 2)
Anterior approach, 3) Posterior approach, 4) Left posterior approach, 5) Right/
medial uncinate approach and 6) Mesenteric approach. A while ago, we
preferably applied the mesenteric approach to PD, and also the combination of
this approach with vessel sealing system (VSS) significantly reduced intraoperative
blood loss (Mesenteric approach with VSS, n=21 vs. non-‘Artery first’ approach
without VSS, n=78; 320±174ml vs. 486±263ml, p<0.01).
Modified de-rotation method as complete ‘Artery first’ approach: Most recently,
for further refinement of operative procedure, we refined a right/medial uncinate
and posterior approach as modified de-rotation method. Point of view in this
method was the complete clockwise rotation of small intestinal mesentery
including ascending colon, in order to linearize from duodenum to jejunum
and look at the direct front of superior mesenteric artery (SMA), vein (SMV) and
some branched jejunal vessels originated from SMA and SMV (Fig.). Thereby, in
the posterior view, the easy dissection of all pancreatic branch originated from
SMA can be done. This modified de-rotation method was possible to achieve the
complete ‘Artery first’ approach.
Preoperative 3D simulation of arterial and venous anatomy:
Until now, we applied 3D volumetery software (SYNAPSE VINCENT®) as
preoperative simulation for hepatic resection. And recently, for evaluation of the
position relationship between arteries and veins surround pancreas head, we
adopted this software before PD. As first step, arteries and veins are automatically
identified, and small vessels are manually traced on the axial CT view. After
that, 3D arterial and venous simulations are combined. Grasp of detailed vessel
anatomy and its relationship using preoperative 3D simulation enable to safely
perform PD, even in young surgeons (operative time; young 512±49 vs. senior
445±41 min, p<0.01), (blood loss; young 353±203 vs. senior 246±109 ml,
p=0.16).
Conclusion: Those refinements and advances are possible to safely and easily
perform pancreatoduodenectomy.
2. Recent refinements and advances for pancreatoduodenectomy
Yuji MORINE ; Mitsuo SHIMADA ; Satoru IMURA ; Tetsuya IKEMOTO ; Yusuke ARAKAWA ; Syuichi IWAHASHI ; Yu SAITO ; Shinichiro YAMADA ; Daichi ISHIKAWA
Innovation 2014;8(4):136-137
Background: The technique of pancreatoduodenectomy (PD) has evolved, andartery first’ approach was considered for the intraoperative early determinationof resectability for borderline resectable cases before the ‘point of no return’and avoidance of blood congestion resulted in the reduction of blood loss. Also,active application of energy device was useful for the reduced operative time andblood loss. Recently, 3D simulation for hepatobiliary pancreatic surgery has beenuseful and mandatory. In this presentation, we introduced our recent refinementsand advances for PD.‘Artery first’ approach and vessel sealing system for PD: ‘Artery first’ approachwere considered as six different methods as follows; 1) Superior approach, 2)Anterior approach, 3) Posterior approach, 4) Left posterior approach, 5) Right/medial uncinate approach and 6) Mesenteric approach. A while ago, wepreferably applied the mesenteric approach to PD, and also the combination ofthis approach with vessel sealing system (VSS) significantly reduced intraoperativeblood loss (Mesenteric approach with VSS, n=21 vs. non-‘Artery first’ approachwithout VSS, n=78; 320±174ml vs. 486±263ml, p<0.01).Modified de-rotation method as complete ‘Artery first’ approach: Most recently,for further refinement of operative procedure, we refined a right/medial uncinateand posterior approach as modified de-rotation method. Point of view in thismethod was the complete clockwise rotation of small intestinal mesenteryincluding ascending colon, in order to linearize from duodenum to jejunumand look at the direct front of superior mesenteric artery (SMA), vein (SMV) andsome branched jejunal vessels originated from SMA and SMV (Fig.). Thereby, inthe posterior view, the easy dissection of all pancreatic branch originated fromSMA can be done. This modified de-rotation method was possible to achieve thecomplete ‘Artery first’ approach.Preoperative 3D simulation of arterial and venous anatomy:Until now, we applied 3D volumetery software (SYNAPSE VINCENT®) aspreoperative simulation for hepatic resection. And recently, for evaluation of theposition relationship between arteries and veins surround pancreas head, weadopted this software before PD. As first step, arteries and veins are automaticallyidentified, and small vessels are manually traced on the axial CT view. Afterthat, 3D arterial and venous simulations are combined. Grasp of detailed vesselanatomy and its relationship using preoperative 3D simulation enable to safelyperform PD, even in young surgeons (operative time; young 512±49 vs. senior445±41 min, p<0.01), (blood loss; young 353±203 vs. senior 246±109 ml,p=0.16).Conclusion: Those refinements and advances are possible to safely and easilyperform pancreatoduodenectomy.
3.Recent refinements of glissonean pedicle approach for liver resection
Yu Saito M.D. ; Mitsuo Shimada M.D ; Satoru Imura M.D ; Yuji Morine M.D ; Tetsuya Ikemoto M.D. ; Yusuke Arakawa M.D. ; Shuichi Iwahashi M.D. ; Shinichiro Yamada M.D ; Daichi Ichikawa M.D ; Masato Yoshikawa M.D. ; Hiroki Teraoku M.D.
Innovation 2014;8(4):142-143
Background: The glissonean pedicle approach was introduced by Couinaud
and Takasaki in the early 1980s. The key of the glissonean pedicle approach is
clamping the pedicle first, secondly confirming the territory, and finally dissecting
the liver parenchyma. In this presentation, we introduced our recent refinements
of glissonean pedicle approach for liver resection.
“Approach to the glissonean pedicles at the hepatic hilus” Couinaud described
three approaches to the hepatic hilus. 1) Intra-fascial access (Control method):
The conventional dissection at the hilus or within the sheath is referred to as intrafascial
access However, dissection performed under the hilar plate is dangerous
and surgeons have to consider any variations of the hepatic artery and bile ducts.
2) Extra-fascial access (Glissonean pedicle approach): The glissonean pedicle is
dissected from the liver parenchyma at the hepatic hilus before dissecting the
liver parenchyma. This procedure prevents intrahepatic metastasis of HCC, which
spreads along the portal vein and improves the overall survival after surgery.
3) Extra-fascial and transfissural access: If the main portal fissure or the left
suprahepatic fissure is opened after dissecting the liver parenchyma, the surgeon
can confirm the pedicles that arise from the hilar plate or the umbilical plate.
“Operative techniques” 1) Preoperative 3D simulation of the precise anatomy
of portal vein, hepatic artery and bile duct at hepatic hilus should be performed.
2) Right glissonean pedicle: The hilar plate is detached from the quadrate lobe.
The assistant pulls the liver parenchyma cranially and the operator conversely
pulls the hepatoduodenal ligament caudally. Mayo scissors are inserted along the
liver parenchyma between the liver parenchyma and glissonean capsule (Fig.1).
Then forceps are inserted in the same way and the right main pedicle is taped
(Fig.2). The right anterior and posterior glissonean pedicles are taped as well. 3)
Left glissonean pedicle: The hilar plate is detached from the liver parenchyma.
Then, the Arantius duct is confirmed and the left pedicle is dissected along the left
pedicle at the ventral side of the Arantius duct.
“Pitfall of glissonean pedicle approach” The right pedicle should be dissected
in the liver side as much as possible to prevent the injury of left hepatic duct.
If possible, the right pedicle is recommended to be dissected at the level of the
second branches separately (Fig.3). The right posterior hepatic duct sometimes
branches from the left hepatic duct and the Arantius duct is confirmed and the left
pedicle should be dissected along the left pedicle at the ventral side of the Arantius
duct because the right posterior hepatic duct branches from the left hepatic duct
at the dorsal side of Arantius’ duct. In addition, the intraoperative cholangiogram
should be used in the case with the abnormal anatomy of bile duct.
Conclusions: Any anatomical hepatectomy can be performed using “glissonean
pedicle approach” which allows simple, safe and easy liver resection.
4.Paradoxical increases in serum levels of highly chlorinated PCBs in aged women in clear contrast to robust decreases in dietary intakes from 1980 to 2003 in Japan.
Akio KOIZUMI ; Kouji H HARADA ; Bita ESLAMI ; Yoshinori FUJIMINE ; Noriyuki HACHIYA ; Iwao HIROSAWA ; Kayoko INOUE ; Sumiko INOUE ; Shigeki KODA ; Yukinori KUSAKA ; Katsuyuki MURATA ; Kazuyuki OMAE ; Norimitsu SAITO ; Shinichiro SHIMBO ; Katsunobu TAKENAKA ; Tatsuya TAKESHITA ; Hidemi TODORIKI ; Yasuhiko WADA ; Takao WATANABE ; Masayuki IKEDA
Environmental Health and Preventive Medicine 2009;14(4):235-246
OBJECTIVEExposure to polychlorinated biphenyls (PCBs) is considered to have culminated between 1950 and 1970 in Japan, and exposure through diet, the major exposure route, has decreased significantly over the last 10 years. The primary goal of the present study was to investigate the long-term trends and congener profiles of serum and dietary levels of PCBs using historical samples.
METHODSUsing banked samples collected in 1980, 1995, and 2003 surveys, we determined the daily intakes and serum concentrations of 13 PCB congeners (#74, #99, #118, #138, #146, #153, #156, #163, #164, #170, #180, #182, and #187) in women.
RESULTSThe total daily PCB intake [ng/day, geometric mean (geometric standard deviation)] decreased significantly from 523 (2.5) in 1980 to 63 (3.2) in 2003. The serum total PCB level (ng/g lipid) in women <40 years of age decreased significantly from 185 (1.8) in 1980 to 68 (1.8) in 2003. In contrast, the level in women >50 years of age increased significantly from 125 (1.7) in 1980 to 242 (1.7) in 2003. Specifically, the serum concentrations of hexa (#138, #146, #153, #156, #163, and #164) and hepta (#170, #180, #182, and #187) congeners increased significantly. A comparison of the serum PCB levels of women born from 1940 to 1953 revealed that their serum total PCB level was significantly higher in the 2003 survey [242 (1.7), n = 9] than in the 1995 [128 (2.0), n = 17] surveys. This increase in the total PCB level was attributable to increases in the hepta congener groups.
CONCLUSIONPresent results suggest a decreased rate of elimination of hepta congeners with aging in females, rather than a birth-generation phenomenon.
5.A Survey of Experience and Perception of Bereaved Families about Polypharmacy and Oral Medication of Patients with Advanced Cancer
Kentaro ABE ; Tomofumi MIURA ; Noriko FUJISHIRO ; Ayumi OKIZAKI ; Naoko YOSHINO ; Shigeru AOKI ; Akemi NAITO ; Yasunari MANO ; Shinichiro SAITO ; Masakazu YAMAGUCHI ; Tatsuya MORITA
Palliative Care Research 2021;16(1):85-91
Aims: This study aimed at investigating the status of polypharmacy and the experience and perception of bereaved family members of patients with advanced cancer regarding the burden of oral medication. Methods: Self-administered questionnaires were mailed to 303 bereaved family members of patients with advanced cancer, and 102 valid responses were analyzed (response rate, 33.7%). Results: The number of patients in the polypharmacy group (patients taking six or more tablets at a time) was 65 and that in the non-polypharmacy group (patients taking less than six tablets at a time) was 37. The percentage of bereaved family members who felt that the oral administration burden of patients was significantly higher in the polypharmacy group (43.1% vs. 10.8%, p<0.01). The results of the analysis indicated that the bereaved families wanted to reduce the number of tablets taken at a time for alleviating the burden of polypharmacy. The bereaved families of patients in the polypharmacy group were greatly concerned that the number of oral medications was too large. They also expressed the need for medical staff from whom they could seek explanation and counseling regarding the oral medication of patients. Conclusion: It is suggested that medical staff need to be fully aware of the concerns of patients’ families regarding drugs besides checking the compliance status.