1.Adzuki bean (Vigna angularis) extract reduces amyloid-β aggregation and delays cognitive impairment in Drosophila models of Alzheimer's disease
Honami MIYAZAKI ; Yoko OKAMOTO ; Aya MOTOI ; Takafumi WATANABE ; Shigeru KATAYAMA ; Sei ichi KAWAHARA ; Hidefumi MAKABE ; Hiroshi FUJII ; Shinichi YONEKURA
Nutrition Research and Practice 2019;13(1):64-69
BACKGROUND/OBJECTIVES: Alzheimer's disease is a neurodegenerative disease that induces symptoms such as a decrease in motor function and cognitive impairment. Increases in the aggregation and deposition of amyloid beta protein (Aβ) in the brain may be closely correlated with the development of Alzheimer's disease. In this study, the effects of an adzuki bean extract on the aggregation of Aβ were examined; moreover, the anti-Alzheimer's activity of the adzuki extract was examined. MATERIALS/METHODS: First, we undertook thioflavin T (ThT) fluorescence analysis and transmission electron microscopy (TEM) to evaluate the effect of an adzuki bean extract on Aβ42 aggregation. To evaluate the effects of the adzuki extract on the symptoms of Alzheimer's disease in vivo, Aβ42-overexpressing Drosophila were used. In these flies, overexpression of Aβ42 induced the formation of Aβ42 aggregates in the brain, decreased motor function, and resulted in cognitive impairment. RESULTS: Based on the results obtained by ThT fluorescence assays and TEM, the adzuki bean extract inhibited the formation of Aβ42 aggregates in a concentration-dependent manner. When Aβ42-overexpressing flies were fed regular medium containing adzuki extract, the Aβ42 level in the brain was significantly lower than that in the group fed regular medium only. Furthermore, suppression of the decrease in motor function, suppression of cognitive impairment, and improvement in lifespan were observed in Aβ42-overexpressing flies fed regular medium with adzuki extract. CONCLUSIONS: The results reveal the delaying effects of an adzuki bean extract on the progression of Alzheimer's disease and provide useful information for identifying novel prevention treatments for Alzheimer's disease.
Alzheimer Disease
;
Amyloid beta-Peptides
;
Brain
;
Cognition Disorders
;
Diptera
;
Drosophila
;
Fluorescence
;
Microscopy, Electron, Transmission
;
Neurodegenerative Diseases
2.Soluble extract of soybean fermented with Aspergillus oryzae GB107 inhibits fat accumulation in cultured 3T3-L1 adipocytes.
Kyoung Ha SO ; Yasuki SUZUKI ; Shinichi YONEKURA ; Yutaka SUZUKI ; Chan Ho LEE ; Sung Woo KIM ; Kazuo KATOH ; Sang Gun ROH
Nutrition Research and Practice 2015;9(4):439-444
BACKGROUND/OBJECTIVES: This study was conducted to investigate the effects of fermented soybean (FS) extract on adipocyte differentiation and fat accumulation using cultured 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 adipocytes were treated with FS and nonfermented soybean (NFS) extract during differentiation for 10 days in vitro. Oil red O staining was performed and glycerol-3-phosphate dehydrogenase (GPDH) activity was measured for analysis of fat accumulation. Expressions of adipogenic genes were measured. RESULTS: Soluble extract of soybean fermented with Aspergillus oryzae GB107 contained higher levels of low-molecular-weight protein than conventional soybean protein did. FS extract (50 microg/ml) inhibited adipocyte differentiation and fat accumulation during differentiation of 3T3-L1 preadipocytes for 10 days in vitro. Significantly lower GPDH activity was observed in differentiated adipocytes treated with the FS extract than those treated with NFS extract. Treatment with FS extract resulted in decreased expression levels of leptin, adiponectin, and adipogenin genes, which are associated with adipogenesis. CONCLUSIONS: This report is the first to demonstrate that the water-soluble extract from FS inhibits fat accumulation and lipid storage in 3T3-L1 adipocytes. Thus, the soybean extract fermented with A. oryzae GB107 could be used to control lipid accumulation in adipocytes.
Adipocytes*
;
Adipogenesis
;
Adiponectin
;
Aspergillus oryzae*
;
Glycerolphosphate Dehydrogenase
;
Leptin
;
Oryza
;
Soybeans*